File size: 8,438 Bytes
a4c9ccb dbaf653 a4c9ccb dbaf653 a4c9ccb cfcf4c5 e66d9c4 a4c9ccb 23f5157 a4c9ccb b3ea61b a4c9ccb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A solitary figure in a long black coat stands at the edge of a pier, their back to the viewer. The dark water stretches out as a vast empty space below, while a pale moon hangs suspended in the grainy night sky.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, Two tall windows in a dimly lit room cast rectangles of pale light across an empty floor. A single wooden chair sits between them, its shadow elongated and distorted.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A winding path through winter-bare trees leads to a small chapel with a pointed spire. The ground and sky merge in shades of grey, broken only by the stark silhouettes of branches.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A hamster stands upright on its hind legs against an empty background, its shadow stretching impossibly long behind it. A single sunflower seed lies untouched before it.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A Range Rover sits abandoned in deep snow, its angular form a dark mass against the white landscape. Long shadows from unseen trees stripe across its surface.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A glass Coca-Cola bottle stands alone on a window sill, silhouetted against a pale sky. Its distinctive shape casts a elongated shadow across the bare wooden surface.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, A grandfather clock stands impossibly tall in an empty room, its pendulum frozen mid-swing. The room''s corners fade into deep shadow while pale light filters through unseen windows.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'In the style of a Leon Spilliaert luminous lithograph, An empty rocking chair moves by itself on a wooden porch, its curved runners leaving traces in thick dust. The surrounding space is rendered in grainy, textured darkness.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
---
# LeonSpilliaert-Flux-LoKr
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
No validation prompt was used during training.
None
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `896x1280`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 33
- Training steps: 11000
- Learning rate: 8e-05
- Learning rate schedule: constant
- Warmup steps: 100
- Max grad norm: 0.1
- Effective batch size: 3
- Micro-batch size: 3
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=8.0', 'flux_beta_schedule_beta=2.0', 'flow_matching_loss=compatible'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
- SageAttention: Enabled inference
### LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### leonspilliaert-512
- Repeats: 11
- Total number of images: 17
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### leonspilliaert-768
- Repeats: 11
- Total number of images: 17
- Total number of aspect buckets: 4
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### leonspilliaert-1024
- Repeats: 5
- Total number of images: 17
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### leonspilliaert-1536
- Repeats: 2
- Total number of images: 17
- Total number of aspect buckets: 3
- Resolution: 2.359296 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### leonspilliaert-crops-512
- Repeats: 11
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
### leonspilliaert-crops-1024
- Repeats: 5
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'davidrd123/LeonSpilliaert-Flux-LoKr'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=896,
height=1280,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|