davidrd123 commited on
Commit
f9cb0ed
·
verified ·
1 Parent(s): 23e313a

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +269 -0
README.md ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of m4rc0 anime background paintings, A series of industrial machines are arranged in rows inside a large, spacious warehouse. Bright natural light streams in from expansive windows, casting shadows across the wooden floor. The interior is filled with structural elements like beams and supports, suggesting a manufacturing environment.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of m4rc0 anime background paintings, A moonlit alley with clothes hanging on a line and dimly lit buildings. The sky is overcast with clouds partially covering the moon. Balconies and beams create shadows across the scene.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of m4rc0 anime background paintings, A dark, starry night sky with swirling clouds over a mountainous landscape. A small, illuminated caravan sits in an open field dotted with white flowers.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of m4rc0 anime background paintings, A green chalkboard with handwritten text partially covered by shadows cast from a window. The window frame and sunlight create distinct lines and patterns on the board. Artwork pages are pinned at the top.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of m4rc0 anime background paintings, A misty morning harbor with fishing boats gently bobbing in the water. The rising sun casts long shadows across weathered wooden docks, while seabirds circle overhead. Stacked crates and coiled ropes line the pier.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of m4rc0 anime background paintings, A two-story library interior with spiral staircases and towering wooden bookshelves. Autumn sunlight filters through stained glass windows, creating colorful patterns on leather armchairs and scattered open books.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of m4rc0 anime background paintings, An abandoned Victorian greenhouse with broken glass panels and overgrown vines. Shafts of afternoon light pierce through the dusty air, illuminating scattered terra cotta pots and rusted gardening tools.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of m4rc0 anime background paintings, A rural train platform at dusk with a wooden waiting shelter. Paper lanterns cast a warm glow on the wooden planks, while steam from a distant locomotive drifts across the purple-orange sky.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ ---
62
+
63
+ # MarcoBackground-SimpleTrigger-Beta_8-2-Flux-LoKr
64
+
65
+ This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
66
+
67
+
68
+ No validation prompt was used during training.
69
+
70
+ None
71
+
72
+
73
+
74
+ ## Validation settings
75
+ - CFG: `3.0`
76
+ - CFG Rescale: `0.0`
77
+ - Steps: `20`
78
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
79
+ - Seed: `42`
80
+ - Resolution: `1408x768`
81
+ - Skip-layer guidance:
82
+
83
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
84
+
85
+ You can find some example images in the following gallery:
86
+
87
+
88
+ <Gallery />
89
+
90
+ The text encoder **was not** trained.
91
+ You may reuse the base model text encoder for inference.
92
+
93
+
94
+ ## Training settings
95
+
96
+ - Training epochs: 0
97
+ - Training steps: 200
98
+ - Learning rate: 0.0006
99
+ - Learning rate schedule: polynomial
100
+ - Warmup steps: 100
101
+ - Max grad norm: 0.1
102
+ - Effective batch size: 3
103
+ - Micro-batch size: 3
104
+ - Gradient accumulation steps: 1
105
+ - Number of GPUs: 1
106
+ - Gradient checkpointing: True
107
+ - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=8.0', 'flux_beta_schedule_beta=2.0', 'flow_matching_loss=compatible'])
108
+ - Optimizer: adamw_bf16
109
+ - Trainable parameter precision: Pure BF16
110
+ - Caption dropout probability: 10.0%
111
+
112
+ - SageAttention: Enabled inference
113
+ ### LyCORIS Config:
114
+ ```json
115
+ {
116
+ "algo": "lokr",
117
+ "multiplier": 1.0,
118
+ "linear_dim": 10000,
119
+ "linear_alpha": 1,
120
+ "factor": 16,
121
+ "apply_preset": {
122
+ "target_module": [
123
+ "Attention",
124
+ "FeedForward"
125
+ ],
126
+ "module_algo_map": {
127
+ "Attention": {
128
+ "factor": 16
129
+ },
130
+ "FeedForward": {
131
+ "factor": 8
132
+ }
133
+ }
134
+ }
135
+ }
136
+ ```
137
+
138
+ ## Datasets
139
+
140
+ ### marco-background-512
141
+ - Repeats: 22
142
+ - Total number of images: 34
143
+ - Total number of aspect buckets: 1
144
+ - Resolution: 0.262144 megapixels
145
+ - Cropped: False
146
+ - Crop style: None
147
+ - Crop aspect: None
148
+ - Used for regularisation data: No
149
+ ### marco-background-768
150
+ - Repeats: 22
151
+ - Total number of images: 34
152
+ - Total number of aspect buckets: 3
153
+ - Resolution: 0.589824 megapixels
154
+ - Cropped: False
155
+ - Crop style: None
156
+ - Crop aspect: None
157
+ - Used for regularisation data: No
158
+ ### marco-background-1024
159
+ - Repeats: 11
160
+ - Total number of images: 34
161
+ - Total number of aspect buckets: 4
162
+ - Resolution: 1.048576 megapixels
163
+ - Cropped: False
164
+ - Crop style: None
165
+ - Crop aspect: None
166
+ - Used for regularisation data: No
167
+ ### marco-background-1536
168
+ - Repeats: 5
169
+ - Total number of images: 34
170
+ - Total number of aspect buckets: 1
171
+ - Resolution: 2.359296 megapixels
172
+ - Cropped: False
173
+ - Crop style: None
174
+ - Crop aspect: None
175
+ - Used for regularisation data: No
176
+ ### marco-background-512-crop
177
+ - Repeats: 11
178
+ - Total number of images: 34
179
+ - Total number of aspect buckets: 1
180
+ - Resolution: 0.262144 megapixels
181
+ - Cropped: True
182
+ - Crop style: random
183
+ - Crop aspect: square
184
+ - Used for regularisation data: No
185
+ ### marco-background-768-crop
186
+ - Repeats: 11
187
+ - Total number of images: 34
188
+ - Total number of aspect buckets: 1
189
+ - Resolution: 0.589824 megapixels
190
+ - Cropped: True
191
+ - Crop style: random
192
+ - Crop aspect: square
193
+ - Used for regularisation data: No
194
+ ### marco-background-1024-crop
195
+ - Repeats: 5
196
+ - Total number of images: 34
197
+ - Total number of aspect buckets: 1
198
+ - Resolution: 1.048576 megapixels
199
+ - Cropped: True
200
+ - Crop style: random
201
+ - Crop aspect: square
202
+ - Used for regularisation data: No
203
+ ### marco-background-1536-crop
204
+ - Repeats: 2
205
+ - Total number of images: 34
206
+ - Total number of aspect buckets: 1
207
+ - Resolution: 2.359296 megapixels
208
+ - Cropped: True
209
+ - Crop style: random
210
+ - Crop aspect: square
211
+ - Used for regularisation data: No
212
+
213
+
214
+ ## Inference
215
+
216
+
217
+ ```python
218
+ import torch
219
+ from diffusers import DiffusionPipeline
220
+ from lycoris import create_lycoris_from_weights
221
+
222
+
223
+ def download_adapter(repo_id: str):
224
+ import os
225
+ from huggingface_hub import hf_hub_download
226
+ adapter_filename = "pytorch_lora_weights.safetensors"
227
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
228
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
229
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
230
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
231
+ os.makedirs(path_to_adapter, exist_ok=True)
232
+ hf_hub_download(
233
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
234
+ )
235
+
236
+ return path_to_adapter_file
237
+
238
+ model_id = 'black-forest-labs/FLUX.1-dev'
239
+ adapter_repo_id = 'davidrd123/MarcoBackground-SimpleTrigger-Beta_8-2-Flux-LoKr'
240
+ adapter_filename = 'pytorch_lora_weights.safetensors'
241
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
242
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
243
+ lora_scale = 1.0
244
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
245
+ wrapper.merge_to()
246
+
247
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
248
+
249
+
250
+ ## Optional: quantise the model to save on vram.
251
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
252
+ from optimum.quanto import quantize, freeze, qint8
253
+ quantize(pipeline.transformer, weights=qint8)
254
+ freeze(pipeline.transformer)
255
+
256
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
257
+ image = pipeline(
258
+ prompt=prompt,
259
+ num_inference_steps=20,
260
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
261
+ width=1408,
262
+ height=768,
263
+ guidance_scale=3.0,
264
+ ).images[0]
265
+ image.save("output.png", format="PNG")
266
+ ```
267
+
268
+
269
+