File size: 180,077 Bytes
451ea98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
program(1.0)
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.0.0"}, {"coremltools-version", "7.0b2"}})]
{
    func main<ios16>(tensor<fp16, [1, 4, 64, 64]> z) {
            tensor<int32, []> var_7 = const()[name = tensor<string, []>("op_7"), val = tensor<int32, []>(1)];
            tensor<int32, [2]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_12 = const()[name = tensor<string, []>("op_12"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_1_pad_type_0 = const()[name = tensor<string, []>("input_1_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_1_pad_0 = const()[name = tensor<string, []>("input_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<fp16, [4, 4, 1, 1]> post_quant_conv_weight_to_fp16 = const()[name = tensor<string, []>("post_quant_conv_weight_to_fp16"), val = tensor<fp16, [4, 4, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
            tensor<fp16, [4]> post_quant_conv_bias_to_fp16 = const()[name = tensor<string, []>("post_quant_conv_bias_to_fp16"), val = tensor<fp16, [4]>([0x1.0cp-5, -0x1.5ap-4, -0x1.fp-3, 0x1.0ep-3])];
            tensor<fp16, [1, 4, 64, 64]> input_1_cast = conv(bias = post_quant_conv_bias_to_fp16, dilations = var_12, groups = var_7, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = var_10, weight = post_quant_conv_weight_to_fp16, x = z)[name = tensor<string, []>("input_1_cast")];
            tensor<int32, []> var_26 = const()[name = tensor<string, []>("op_26"), val = tensor<int32, []>(1)];
            tensor<int32, [2]> var_44 = const()[name = tensor<string, []>("op_44"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_46 = const()[name = tensor<string, []>("op_46"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 4, 3, 3]> decoder_conv_in_weight_to_fp16 = const()[name = tensor<string, []>("decoder_conv_in_weight_to_fp16"), val = tensor<fp16, [512, 4, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(192)))];
            tensor<fp16, [512]> decoder_conv_in_bias_to_fp16 = const()[name = tensor<string, []>("decoder_conv_in_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37120)))];
            tensor<fp16, [1, 512, 64, 64]> input_3_cast = conv(bias = decoder_conv_in_bias_to_fp16, dilations = var_46, groups = var_26, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_44, weight = decoder_conv_in_weight_to_fp16, x = input_1_cast)[name = tensor<string, []>("input_3_cast")];
            tensor<int32, [5]> reshape_0_shape_0 = const()[name = tensor<string, []>("reshape_0_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_0_cast = reshape(shape = reshape_0_shape_0, x = input_3_cast)[name = tensor<string, []>("reshape_0_cast")];
            tensor<int32, [3]> reduce_mean_0_axes_0 = const()[name = tensor<string, []>("reduce_mean_0_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_0_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_0_cast = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0_cast)[name = tensor<string, []>("reduce_mean_0_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_0_cast = sub(x = reshape_0_cast, y = reduce_mean_0_cast)[name = tensor<string, []>("sub_0_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_0_cast = square(x = sub_0_cast)[name = tensor<string, []>("square_0_cast")];
            tensor<int32, [3]> reduce_mean_2_axes_0 = const()[name = tensor<string, []>("reduce_mean_2_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_2_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_2_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_2_cast = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0_cast)[name = tensor<string, []>("reduce_mean_2_cast")];
            tensor<fp16, []> add_0_y_0_to_fp16 = const()[name = tensor<string, []>("add_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_0_cast = add(x = reduce_mean_2_cast, y = add_0_y_0_to_fp16)[name = tensor<string, []>("add_0_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_0_cast = sqrt(x = add_0_cast)[name = tensor<string, []>("sqrt_0_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_0_cast = real_div(x = sub_0_cast, y = sqrt_0_cast)[name = tensor<string, []>("real_div_0_cast")];
            tensor<int32, [4]> reshape_1_shape_0 = const()[name = tensor<string, []>("reshape_1_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_1_cast = reshape(shape = reshape_1_shape_0, x = real_div_0_cast)[name = tensor<string, []>("reshape_1_cast")];
            tensor<fp16, [512]> add_1_mean_0_to_fp16 = const()[name = tensor<string, []>("add_1_mean_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(38208)))];
            tensor<fp16, [512]> add_1_variance_0_to_fp16 = const()[name = tensor<string, []>("add_1_variance_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39296)))];
            tensor<fp16, [512]> add_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_1_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40384)))];
            tensor<fp16, [512]> add_1_beta_0_to_fp16 = const()[name = tensor<string, []>("add_1_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41472)))];
            tensor<fp16, []> add_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_1_cast = batch_norm(beta = add_1_beta_0_to_fp16, epsilon = add_1_epsilon_0_to_fp16, gamma = add_1_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_1_cast)[name = tensor<string, []>("add_1_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_1_cast = silu(x = add_1_cast)[name = tensor<string, []>("hidden_states_1_cast")];
            tensor<int32, [2]> var_65 = const()[name = tensor<string, []>("op_65"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_67 = const()[name = tensor<string, []>("op_67"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42560)))];
            tensor<fp16, [512]> decoder_mid_block_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4761216)))];
            tensor<fp16, [1, 512, 64, 64]> input_7_cast = conv(bias = decoder_mid_block_resnets_0_conv1_bias_to_fp16, dilations = var_67, groups = var_26, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_65, weight = decoder_mid_block_resnets_0_conv1_weight_to_fp16, x = hidden_states_1_cast)[name = tensor<string, []>("input_7_cast")];
            tensor<int32, [5]> reshape_4_shape_0 = const()[name = tensor<string, []>("reshape_4_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_4_cast = reshape(shape = reshape_4_shape_0, x = input_7_cast)[name = tensor<string, []>("reshape_4_cast")];
            tensor<int32, [3]> reduce_mean_3_axes_0 = const()[name = tensor<string, []>("reduce_mean_3_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_3_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_3_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_3_cast = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4_cast)[name = tensor<string, []>("reduce_mean_3_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_2_cast = sub(x = reshape_4_cast, y = reduce_mean_3_cast)[name = tensor<string, []>("sub_2_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_1_cast = square(x = sub_2_cast)[name = tensor<string, []>("square_1_cast")];
            tensor<int32, [3]> reduce_mean_5_axes_0 = const()[name = tensor<string, []>("reduce_mean_5_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_5_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_5_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_5_cast = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1_cast)[name = tensor<string, []>("reduce_mean_5_cast")];
            tensor<fp16, []> add_2_y_0_to_fp16 = const()[name = tensor<string, []>("add_2_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_2_cast = add(x = reduce_mean_5_cast, y = add_2_y_0_to_fp16)[name = tensor<string, []>("add_2_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_1_cast = sqrt(x = add_2_cast)[name = tensor<string, []>("sqrt_1_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_1_cast = real_div(x = sub_2_cast, y = sqrt_1_cast)[name = tensor<string, []>("real_div_1_cast")];
            tensor<int32, [4]> reshape_5_shape_0 = const()[name = tensor<string, []>("reshape_5_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_5_cast = reshape(shape = reshape_5_shape_0, x = real_div_1_cast)[name = tensor<string, []>("reshape_5_cast")];
            tensor<fp16, [512]> add_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_3_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4762304)))];
            tensor<fp16, [512]> add_3_beta_0_to_fp16 = const()[name = tensor<string, []>("add_3_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4763392)))];
            tensor<fp16, []> add_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_3_cast = batch_norm(beta = add_3_beta_0_to_fp16, epsilon = add_3_epsilon_0_to_fp16, gamma = add_3_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_5_cast)[name = tensor<string, []>("add_3_cast")];
            tensor<fp16, [1, 512, 64, 64]> input_11_cast = silu(x = add_3_cast)[name = tensor<string, []>("input_11_cast")];
            tensor<int32, [2]> var_77 = const()[name = tensor<string, []>("op_77"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_79 = const()[name = tensor<string, []>("op_79"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4764480)))];
            tensor<fp16, [512]> decoder_mid_block_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9483136)))];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_5_cast = conv(bias = decoder_mid_block_resnets_0_conv2_bias_to_fp16, dilations = var_79, groups = var_26, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_77, weight = decoder_mid_block_resnets_0_conv2_weight_to_fp16, x = input_11_cast)[name = tensor<string, []>("hidden_states_5_cast")];
            tensor<fp16, [1, 512, 64, 64]> var_82_cast = add(x = input_3_cast, y = hidden_states_5_cast)[name = tensor<string, []>("op_82_cast")];
            tensor<int32, [4]> reshape_8_shape_0 = const()[name = tensor<string, []>("reshape_8_shape_0"), val = tensor<int32, [4]>([1, 32, 16, 4096])];
            tensor<fp16, [1, 32, 16, 4096]> reshape_8_cast = reshape(shape = reshape_8_shape_0, x = var_82_cast)[name = tensor<string, []>("reshape_8_cast")];
            tensor<int32, [2]> reduce_mean_6_axes_0 = const()[name = tensor<string, []>("reduce_mean_6_axes_0"), val = tensor<int32, [2]>([2, 3])];
            tensor<bool, []> reduce_mean_6_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_6_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1]> reduce_mean_6_cast = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8_cast)[name = tensor<string, []>("reduce_mean_6_cast")];
            tensor<fp16, [1, 32, 16, 4096]> sub_4_cast = sub(x = reshape_8_cast, y = reduce_mean_6_cast)[name = tensor<string, []>("sub_4_cast")];
            tensor<fp16, [1, 32, 16, 4096]> square_2_cast = square(x = sub_4_cast)[name = tensor<string, []>("square_2_cast")];
            tensor<int32, [2]> reduce_mean_8_axes_0 = const()[name = tensor<string, []>("reduce_mean_8_axes_0"), val = tensor<int32, [2]>([2, 3])];
            tensor<bool, []> reduce_mean_8_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_8_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1]> reduce_mean_8_cast = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2_cast)[name = tensor<string, []>("reduce_mean_8_cast")];
            tensor<fp16, []> add_4_y_0_to_fp16 = const()[name = tensor<string, []>("add_4_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1]> add_4_cast = add(x = reduce_mean_8_cast, y = add_4_y_0_to_fp16)[name = tensor<string, []>("add_4_cast")];
            tensor<fp16, [1, 32, 1, 1]> sqrt_2_cast = sqrt(x = add_4_cast)[name = tensor<string, []>("sqrt_2_cast")];
            tensor<fp16, [1, 32, 16, 4096]> real_div_2_cast = real_div(x = sub_4_cast, y = sqrt_2_cast)[name = tensor<string, []>("real_div_2_cast")];
            tensor<int32, [3]> reshape_9_shape_0 = const()[name = tensor<string, []>("reshape_9_shape_0"), val = tensor<int32, [3]>([1, 512, 4096])];
            tensor<fp16, [1, 512, 4096]> reshape_9_cast = reshape(shape = reshape_9_shape_0, x = real_div_2_cast)[name = tensor<string, []>("reshape_9_cast")];
            tensor<fp16, [1, 512, 1]> reshape_10_to_fp16 = const()[name = tensor<string, []>("reshape_10_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9484224)))];
            tensor<fp16, [1, 512, 4096]> mul_2_cast = mul(x = reshape_9_cast, y = reshape_10_to_fp16)[name = tensor<string, []>("mul_2_cast")];
            tensor<fp16, [1, 512, 1]> reshape_11_to_fp16 = const()[name = tensor<string, []>("reshape_11_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9485312)))];
            tensor<fp16, [1, 512, 4096]> add_5_cast = add(x = mul_2_cast, y = reshape_11_to_fp16)[name = tensor<string, []>("add_5_cast")];
            tensor<int32, [3]> input_15_perm_0 = const()[name = tensor<string, []>("input_15_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
            tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_q_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_q_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9486400)))];
            tensor<fp16, [512]> decoder_mid_block_attentions_0_to_q_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_q_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10010752)))];
            tensor<fp16, [1, 4096, 512]> transpose_9 = transpose(perm = input_15_perm_0, x = add_5_cast)[name = tensor<string, []>("transpose_9")];
            tensor<fp16, [1, 4096, 512]> query_1_cast = linear(bias = decoder_mid_block_attentions_0_to_q_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_q_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("query_1_cast")];
            tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_k_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_k_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10011840)))];
            tensor<fp16, [512]> decoder_mid_block_attentions_0_to_k_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_k_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10536192)))];
            tensor<fp16, [1, 4096, 512]> key_1_cast = linear(bias = decoder_mid_block_attentions_0_to_k_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_k_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("key_1_cast")];
            tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_v_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_v_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10537280)))];
            tensor<fp16, [512]> decoder_mid_block_attentions_0_to_v_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_v_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11061632)))];
            tensor<fp16, [1, 4096, 512]> value_1_cast = linear(bias = decoder_mid_block_attentions_0_to_v_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_v_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("value_1_cast")];
            tensor<int32, [4]> var_123 = const()[name = tensor<string, []>("op_123"), val = tensor<int32, [4]>([1, -1, 1, 512])];
            tensor<fp16, [1, 4096, 1, 512]> var_124_cast = reshape(shape = var_123, x = query_1_cast)[name = tensor<string, []>("op_124_cast")];
            tensor<int32, [4]> var_126 = const()[name = tensor<string, []>("op_126"), val = tensor<int32, [4]>([1, -1, 1, 512])];
            tensor<fp16, [1, 4096, 1, 512]> var_127_cast = reshape(shape = var_126, x = key_1_cast)[name = tensor<string, []>("op_127_cast")];
            tensor<int32, [4]> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, [4]>([1, -1, 1, 512])];
            tensor<fp16, [1, 4096, 1, 512]> var_130_cast = reshape(shape = var_129, x = value_1_cast)[name = tensor<string, []>("op_130_cast")];
            tensor<int32, [4]> value_perm_0 = const()[name = tensor<string, []>("value_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
            tensor<fp16, []> mul_3_y_0_to_fp16 = const()[name = tensor<string, []>("mul_3_y_0_to_fp16"), val = tensor<fp16, []>(0x1.6ap-5)];
            tensor<fp16, [1, 4096, 1, 512]> mul_3_cast = mul(x = var_124_cast, y = mul_3_y_0_to_fp16)[name = tensor<string, []>("mul_3_cast")];
            tensor<bool, []> matmul_0_transpose_y_0 = const()[name = tensor<string, []>("matmul_0_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> matmul_0_transpose_x_0 = const()[name = tensor<string, []>("matmul_0_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<int32, [4]> transpose_2_perm_0 = const()[name = tensor<string, []>("transpose_2_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
            tensor<int32, [4]> transpose_3_perm_0 = const()[name = tensor<string, []>("transpose_3_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
            tensor<fp16, [1, 1, 4096, 512]> transpose_6 = transpose(perm = transpose_3_perm_0, x = var_127_cast)[name = tensor<string, []>("transpose_6")];
            tensor<fp16, [1, 1, 4096, 512]> transpose_7 = transpose(perm = transpose_2_perm_0, x = mul_3_cast)[name = tensor<string, []>("transpose_7")];
            tensor<fp16, [1, 1, 4096, 4096]> matmul_0_cast = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_7, y = transpose_6)[name = tensor<string, []>("matmul_0_cast")];
            tensor<int32, []> softmax_0_axis_0 = const()[name = tensor<string, []>("softmax_0_axis_0"), val = tensor<int32, []>(-1)];
            tensor<fp16, [1, 1, 4096, 4096]> softmax_0_cast = softmax(axis = softmax_0_axis_0, x = matmul_0_cast)[name = tensor<string, []>("softmax_0_cast")];
            tensor<bool, []> hidden_states_11_transpose_x_0 = const()[name = tensor<string, []>("hidden_states_11_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> hidden_states_11_transpose_y_0 = const()[name = tensor<string, []>("hidden_states_11_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 1, 4096, 512]> transpose_8 = transpose(perm = value_perm_0, x = var_130_cast)[name = tensor<string, []>("transpose_8")];
            tensor<fp16, [1, 1, 4096, 512]> hidden_states_11_cast = matmul(transpose_x = hidden_states_11_transpose_x_0, transpose_y = hidden_states_11_transpose_y_0, x = softmax_0_cast, y = transpose_8)[name = tensor<string, []>("hidden_states_11_cast")];
            tensor<int32, [4]> var_133_perm_0 = const()[name = tensor<string, []>("op_133_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
            tensor<int32, [3]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [3]>([1, -1, 512])];
            tensor<fp16, [1, 4096, 1, 512]> transpose_5 = transpose(perm = var_133_perm_0, x = hidden_states_11_cast)[name = tensor<string, []>("transpose_5")];
            tensor<fp16, [1, 4096, 512]> hidden_states_13_cast = reshape(shape = var_137, x = transpose_5)[name = tensor<string, []>("hidden_states_13_cast")];
            tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_out_0_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_out_0_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11062720)))];
            tensor<fp16, [512]> decoder_mid_block_attentions_0_to_out_0_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_out_0_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11587072)))];
            tensor<fp16, [1, 4096, 512]> input_19_cast = linear(bias = decoder_mid_block_attentions_0_to_out_0_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_out_0_weight_to_fp16, x = hidden_states_13_cast)[name = tensor<string, []>("input_19_cast")];
            tensor<int32, [3]> var_144_perm_0 = const()[name = tensor<string, []>("op_144_perm_0"), val = tensor<int32, [3]>([0, -1, -2])];
            tensor<int32, [4]> var_145 = const()[name = tensor<string, []>("op_145"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 4096]> transpose_4 = transpose(perm = var_144_perm_0, x = input_19_cast)[name = tensor<string, []>("transpose_4")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_17_cast = reshape(shape = var_145, x = transpose_4)[name = tensor<string, []>("hidden_states_17_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_19_cast = add(x = hidden_states_17_cast, y = var_82_cast)[name = tensor<string, []>("hidden_states_19_cast")];
            tensor<int32, [5]> reshape_12_shape_0 = const()[name = tensor<string, []>("reshape_12_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_12_cast = reshape(shape = reshape_12_shape_0, x = hidden_states_19_cast)[name = tensor<string, []>("reshape_12_cast")];
            tensor<int32, [3]> reduce_mean_9_axes_0 = const()[name = tensor<string, []>("reduce_mean_9_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_9_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_9_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_9_cast = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12_cast)[name = tensor<string, []>("reduce_mean_9_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_6_cast = sub(x = reshape_12_cast, y = reduce_mean_9_cast)[name = tensor<string, []>("sub_6_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_3_cast = square(x = sub_6_cast)[name = tensor<string, []>("square_3_cast")];
            tensor<int32, [3]> reduce_mean_11_axes_0 = const()[name = tensor<string, []>("reduce_mean_11_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_11_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_11_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_11_cast = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3_cast)[name = tensor<string, []>("reduce_mean_11_cast")];
            tensor<fp16, []> add_6_y_0_to_fp16 = const()[name = tensor<string, []>("add_6_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_6_cast = add(x = reduce_mean_11_cast, y = add_6_y_0_to_fp16)[name = tensor<string, []>("add_6_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_3_cast = sqrt(x = add_6_cast)[name = tensor<string, []>("sqrt_3_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_3_cast = real_div(x = sub_6_cast, y = sqrt_3_cast)[name = tensor<string, []>("real_div_3_cast")];
            tensor<int32, [4]> reshape_13_shape_0 = const()[name = tensor<string, []>("reshape_13_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_13_cast = reshape(shape = reshape_13_shape_0, x = real_div_3_cast)[name = tensor<string, []>("reshape_13_cast")];
            tensor<fp16, [512]> add_7_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_7_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11588160)))];
            tensor<fp16, [512]> add_7_beta_0_to_fp16 = const()[name = tensor<string, []>("add_7_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11589248)))];
            tensor<fp16, []> add_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_7_cast = batch_norm(beta = add_7_beta_0_to_fp16, epsilon = add_7_epsilon_0_to_fp16, gamma = add_7_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_13_cast)[name = tensor<string, []>("add_7_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_21_cast = silu(x = add_7_cast)[name = tensor<string, []>("hidden_states_21_cast")];
            tensor<int32, [2]> var_160 = const()[name = tensor<string, []>("op_160"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_162 = const()[name = tensor<string, []>("op_162"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_25_pad_type_0 = const()[name = tensor<string, []>("input_25_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_25_pad_0 = const()[name = tensor<string, []>("input_25_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11590336)))];
            tensor<fp16, [512]> decoder_mid_block_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16308992)))];
            tensor<fp16, [1, 512, 64, 64]> input_25_cast = conv(bias = decoder_mid_block_resnets_1_conv1_bias_to_fp16, dilations = var_162, groups = var_26, pad = input_25_pad_0, pad_type = input_25_pad_type_0, strides = var_160, weight = decoder_mid_block_resnets_1_conv1_weight_to_fp16, x = hidden_states_21_cast)[name = tensor<string, []>("input_25_cast")];
            tensor<int32, [5]> reshape_16_shape_0 = const()[name = tensor<string, []>("reshape_16_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_16_cast = reshape(shape = reshape_16_shape_0, x = input_25_cast)[name = tensor<string, []>("reshape_16_cast")];
            tensor<int32, [3]> reduce_mean_12_axes_0 = const()[name = tensor<string, []>("reduce_mean_12_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_12_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_12_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_12_cast = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16_cast)[name = tensor<string, []>("reduce_mean_12_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_8_cast = sub(x = reshape_16_cast, y = reduce_mean_12_cast)[name = tensor<string, []>("sub_8_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_4_cast = square(x = sub_8_cast)[name = tensor<string, []>("square_4_cast")];
            tensor<int32, [3]> reduce_mean_14_axes_0 = const()[name = tensor<string, []>("reduce_mean_14_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_14_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_14_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_14_cast = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4_cast)[name = tensor<string, []>("reduce_mean_14_cast")];
            tensor<fp16, []> add_8_y_0_to_fp16 = const()[name = tensor<string, []>("add_8_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_8_cast = add(x = reduce_mean_14_cast, y = add_8_y_0_to_fp16)[name = tensor<string, []>("add_8_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_4_cast = sqrt(x = add_8_cast)[name = tensor<string, []>("sqrt_4_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_4_cast = real_div(x = sub_8_cast, y = sqrt_4_cast)[name = tensor<string, []>("real_div_4_cast")];
            tensor<int32, [4]> reshape_17_shape_0 = const()[name = tensor<string, []>("reshape_17_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_17_cast = reshape(shape = reshape_17_shape_0, x = real_div_4_cast)[name = tensor<string, []>("reshape_17_cast")];
            tensor<fp16, [512]> add_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_9_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16310080)))];
            tensor<fp16, [512]> add_9_beta_0_to_fp16 = const()[name = tensor<string, []>("add_9_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16311168)))];
            tensor<fp16, []> add_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_9_cast = batch_norm(beta = add_9_beta_0_to_fp16, epsilon = add_9_epsilon_0_to_fp16, gamma = add_9_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_17_cast)[name = tensor<string, []>("add_9_cast")];
            tensor<fp16, [1, 512, 64, 64]> input_29_cast = silu(x = add_9_cast)[name = tensor<string, []>("input_29_cast")];
            tensor<int32, [2]> var_172 = const()[name = tensor<string, []>("op_172"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_174 = const()[name = tensor<string, []>("op_174"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_25_pad_type_0 = const()[name = tensor<string, []>("hidden_states_25_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_25_pad_0 = const()[name = tensor<string, []>("hidden_states_25_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16312256)))];
            tensor<fp16, [512]> decoder_mid_block_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21030912)))];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_25_cast = conv(bias = decoder_mid_block_resnets_1_conv2_bias_to_fp16, dilations = var_174, groups = var_26, pad = hidden_states_25_pad_0, pad_type = hidden_states_25_pad_type_0, strides = var_172, weight = decoder_mid_block_resnets_1_conv2_weight_to_fp16, x = input_29_cast)[name = tensor<string, []>("hidden_states_25_cast")];
            tensor<fp16, [1, 512, 64, 64]> var_177_cast = add(x = hidden_states_19_cast, y = hidden_states_25_cast)[name = tensor<string, []>("op_177_cast")];
            tensor<int32, [5]> reshape_20_shape_0 = const()[name = tensor<string, []>("reshape_20_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_20_cast = reshape(shape = reshape_20_shape_0, x = var_177_cast)[name = tensor<string, []>("reshape_20_cast")];
            tensor<int32, [3]> reduce_mean_15_axes_0 = const()[name = tensor<string, []>("reduce_mean_15_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_15_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_15_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_15_cast = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20_cast)[name = tensor<string, []>("reduce_mean_15_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_10_cast = sub(x = reshape_20_cast, y = reduce_mean_15_cast)[name = tensor<string, []>("sub_10_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_5_cast = square(x = sub_10_cast)[name = tensor<string, []>("square_5_cast")];
            tensor<int32, [3]> reduce_mean_17_axes_0 = const()[name = tensor<string, []>("reduce_mean_17_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_17_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_17_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_17_cast = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5_cast)[name = tensor<string, []>("reduce_mean_17_cast")];
            tensor<fp16, []> add_10_y_0_to_fp16 = const()[name = tensor<string, []>("add_10_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_10_cast = add(x = reduce_mean_17_cast, y = add_10_y_0_to_fp16)[name = tensor<string, []>("add_10_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_5_cast = sqrt(x = add_10_cast)[name = tensor<string, []>("sqrt_5_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_5_cast = real_div(x = sub_10_cast, y = sqrt_5_cast)[name = tensor<string, []>("real_div_5_cast")];
            tensor<int32, [4]> reshape_21_shape_0 = const()[name = tensor<string, []>("reshape_21_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_21_cast = reshape(shape = reshape_21_shape_0, x = real_div_5_cast)[name = tensor<string, []>("reshape_21_cast")];
            tensor<fp16, [512]> add_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_11_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21032000)))];
            tensor<fp16, [512]> add_11_beta_0_to_fp16 = const()[name = tensor<string, []>("add_11_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21033088)))];
            tensor<fp16, []> add_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_11_cast = batch_norm(beta = add_11_beta_0_to_fp16, epsilon = add_11_epsilon_0_to_fp16, gamma = add_11_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_21_cast)[name = tensor<string, []>("add_11_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_27_cast = silu(x = add_11_cast)[name = tensor<string, []>("hidden_states_27_cast")];
            tensor<int32, [2]> var_199 = const()[name = tensor<string, []>("op_199"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_201 = const()[name = tensor<string, []>("op_201"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_35_pad_type_0 = const()[name = tensor<string, []>("input_35_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_35_pad_0 = const()[name = tensor<string, []>("input_35_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21034176)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25752832)))];
            tensor<fp16, [1, 512, 64, 64]> input_35_cast = conv(bias = decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16, dilations = var_201, groups = var_26, pad = input_35_pad_0, pad_type = input_35_pad_type_0, strides = var_199, weight = decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16, x = hidden_states_27_cast)[name = tensor<string, []>("input_35_cast")];
            tensor<int32, [5]> reshape_24_shape_0 = const()[name = tensor<string, []>("reshape_24_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_24_cast = reshape(shape = reshape_24_shape_0, x = input_35_cast)[name = tensor<string, []>("reshape_24_cast")];
            tensor<int32, [3]> reduce_mean_18_axes_0 = const()[name = tensor<string, []>("reduce_mean_18_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_18_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_18_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_18_cast = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24_cast)[name = tensor<string, []>("reduce_mean_18_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_12_cast = sub(x = reshape_24_cast, y = reduce_mean_18_cast)[name = tensor<string, []>("sub_12_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_6_cast = square(x = sub_12_cast)[name = tensor<string, []>("square_6_cast")];
            tensor<int32, [3]> reduce_mean_20_axes_0 = const()[name = tensor<string, []>("reduce_mean_20_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_20_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_20_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_20_cast = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6_cast)[name = tensor<string, []>("reduce_mean_20_cast")];
            tensor<fp16, []> add_12_y_0_to_fp16 = const()[name = tensor<string, []>("add_12_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_12_cast = add(x = reduce_mean_20_cast, y = add_12_y_0_to_fp16)[name = tensor<string, []>("add_12_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_6_cast = sqrt(x = add_12_cast)[name = tensor<string, []>("sqrt_6_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_6_cast = real_div(x = sub_12_cast, y = sqrt_6_cast)[name = tensor<string, []>("real_div_6_cast")];
            tensor<int32, [4]> reshape_25_shape_0 = const()[name = tensor<string, []>("reshape_25_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_25_cast = reshape(shape = reshape_25_shape_0, x = real_div_6_cast)[name = tensor<string, []>("reshape_25_cast")];
            tensor<fp16, [512]> add_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_13_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25753920)))];
            tensor<fp16, [512]> add_13_beta_0_to_fp16 = const()[name = tensor<string, []>("add_13_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25755008)))];
            tensor<fp16, []> add_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_13_cast = batch_norm(beta = add_13_beta_0_to_fp16, epsilon = add_13_epsilon_0_to_fp16, gamma = add_13_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_25_cast)[name = tensor<string, []>("add_13_cast")];
            tensor<fp16, [1, 512, 64, 64]> input_39_cast = silu(x = add_13_cast)[name = tensor<string, []>("input_39_cast")];
            tensor<int32, [2]> var_211 = const()[name = tensor<string, []>("op_211"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_213 = const()[name = tensor<string, []>("op_213"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_31_pad_type_0 = const()[name = tensor<string, []>("hidden_states_31_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_31_pad_0 = const()[name = tensor<string, []>("hidden_states_31_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25756096)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30474752)))];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_31_cast = conv(bias = decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16, dilations = var_213, groups = var_26, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = var_211, weight = decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16, x = input_39_cast)[name = tensor<string, []>("hidden_states_31_cast")];
            tensor<fp16, [1, 512, 64, 64]> var_216_cast = add(x = var_177_cast, y = hidden_states_31_cast)[name = tensor<string, []>("op_216_cast")];
            tensor<int32, [5]> reshape_28_shape_0 = const()[name = tensor<string, []>("reshape_28_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_28_cast = reshape(shape = reshape_28_shape_0, x = var_216_cast)[name = tensor<string, []>("reshape_28_cast")];
            tensor<int32, [3]> reduce_mean_21_axes_0 = const()[name = tensor<string, []>("reduce_mean_21_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_21_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_21_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_21_cast = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28_cast)[name = tensor<string, []>("reduce_mean_21_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_14_cast = sub(x = reshape_28_cast, y = reduce_mean_21_cast)[name = tensor<string, []>("sub_14_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_7_cast = square(x = sub_14_cast)[name = tensor<string, []>("square_7_cast")];
            tensor<int32, [3]> reduce_mean_23_axes_0 = const()[name = tensor<string, []>("reduce_mean_23_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_23_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_23_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_23_cast = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7_cast)[name = tensor<string, []>("reduce_mean_23_cast")];
            tensor<fp16, []> add_14_y_0_to_fp16 = const()[name = tensor<string, []>("add_14_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_14_cast = add(x = reduce_mean_23_cast, y = add_14_y_0_to_fp16)[name = tensor<string, []>("add_14_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_7_cast = sqrt(x = add_14_cast)[name = tensor<string, []>("sqrt_7_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_7_cast = real_div(x = sub_14_cast, y = sqrt_7_cast)[name = tensor<string, []>("real_div_7_cast")];
            tensor<int32, [4]> reshape_29_shape_0 = const()[name = tensor<string, []>("reshape_29_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_29_cast = reshape(shape = reshape_29_shape_0, x = real_div_7_cast)[name = tensor<string, []>("reshape_29_cast")];
            tensor<fp16, [512]> add_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_15_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30475840)))];
            tensor<fp16, [512]> add_15_beta_0_to_fp16 = const()[name = tensor<string, []>("add_15_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30476928)))];
            tensor<fp16, []> add_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_15_cast = batch_norm(beta = add_15_beta_0_to_fp16, epsilon = add_15_epsilon_0_to_fp16, gamma = add_15_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_29_cast)[name = tensor<string, []>("add_15_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_33_cast = silu(x = add_15_cast)[name = tensor<string, []>("hidden_states_33_cast")];
            tensor<int32, [2]> var_229 = const()[name = tensor<string, []>("op_229"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_231 = const()[name = tensor<string, []>("op_231"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_45_pad_type_0 = const()[name = tensor<string, []>("input_45_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_45_pad_0 = const()[name = tensor<string, []>("input_45_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30478016)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35196672)))];
            tensor<fp16, [1, 512, 64, 64]> input_45_cast = conv(bias = decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16, dilations = var_231, groups = var_26, pad = input_45_pad_0, pad_type = input_45_pad_type_0, strides = var_229, weight = decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16, x = hidden_states_33_cast)[name = tensor<string, []>("input_45_cast")];
            tensor<int32, [5]> reshape_32_shape_0 = const()[name = tensor<string, []>("reshape_32_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_32_cast = reshape(shape = reshape_32_shape_0, x = input_45_cast)[name = tensor<string, []>("reshape_32_cast")];
            tensor<int32, [3]> reduce_mean_24_axes_0 = const()[name = tensor<string, []>("reduce_mean_24_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_24_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_24_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_24_cast = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32_cast)[name = tensor<string, []>("reduce_mean_24_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_16_cast = sub(x = reshape_32_cast, y = reduce_mean_24_cast)[name = tensor<string, []>("sub_16_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_8_cast = square(x = sub_16_cast)[name = tensor<string, []>("square_8_cast")];
            tensor<int32, [3]> reduce_mean_26_axes_0 = const()[name = tensor<string, []>("reduce_mean_26_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_26_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_26_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_26_cast = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8_cast)[name = tensor<string, []>("reduce_mean_26_cast")];
            tensor<fp16, []> add_16_y_0_to_fp16 = const()[name = tensor<string, []>("add_16_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_16_cast = add(x = reduce_mean_26_cast, y = add_16_y_0_to_fp16)[name = tensor<string, []>("add_16_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_8_cast = sqrt(x = add_16_cast)[name = tensor<string, []>("sqrt_8_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_8_cast = real_div(x = sub_16_cast, y = sqrt_8_cast)[name = tensor<string, []>("real_div_8_cast")];
            tensor<int32, [4]> reshape_33_shape_0 = const()[name = tensor<string, []>("reshape_33_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_33_cast = reshape(shape = reshape_33_shape_0, x = real_div_8_cast)[name = tensor<string, []>("reshape_33_cast")];
            tensor<fp16, [512]> add_17_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_17_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35197760)))];
            tensor<fp16, [512]> add_17_beta_0_to_fp16 = const()[name = tensor<string, []>("add_17_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35198848)))];
            tensor<fp16, []> add_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_17_cast = batch_norm(beta = add_17_beta_0_to_fp16, epsilon = add_17_epsilon_0_to_fp16, gamma = add_17_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_33_cast)[name = tensor<string, []>("add_17_cast")];
            tensor<fp16, [1, 512, 64, 64]> input_49_cast = silu(x = add_17_cast)[name = tensor<string, []>("input_49_cast")];
            tensor<int32, [2]> var_241 = const()[name = tensor<string, []>("op_241"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_243 = const()[name = tensor<string, []>("op_243"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_37_pad_type_0 = const()[name = tensor<string, []>("hidden_states_37_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_37_pad_0 = const()[name = tensor<string, []>("hidden_states_37_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35199936)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39918592)))];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_37_cast = conv(bias = decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16, dilations = var_243, groups = var_26, pad = hidden_states_37_pad_0, pad_type = hidden_states_37_pad_type_0, strides = var_241, weight = decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16, x = input_49_cast)[name = tensor<string, []>("hidden_states_37_cast")];
            tensor<fp16, [1, 512, 64, 64]> var_246_cast = add(x = var_216_cast, y = hidden_states_37_cast)[name = tensor<string, []>("op_246_cast")];
            tensor<int32, [5]> reshape_36_shape_0 = const()[name = tensor<string, []>("reshape_36_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_36_cast = reshape(shape = reshape_36_shape_0, x = var_246_cast)[name = tensor<string, []>("reshape_36_cast")];
            tensor<int32, [3]> reduce_mean_27_axes_0 = const()[name = tensor<string, []>("reduce_mean_27_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_27_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_27_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_27_cast = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36_cast)[name = tensor<string, []>("reduce_mean_27_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_18_cast = sub(x = reshape_36_cast, y = reduce_mean_27_cast)[name = tensor<string, []>("sub_18_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_9_cast = square(x = sub_18_cast)[name = tensor<string, []>("square_9_cast")];
            tensor<int32, [3]> reduce_mean_29_axes_0 = const()[name = tensor<string, []>("reduce_mean_29_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_29_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_29_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_29_cast = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9_cast)[name = tensor<string, []>("reduce_mean_29_cast")];
            tensor<fp16, []> add_18_y_0_to_fp16 = const()[name = tensor<string, []>("add_18_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_18_cast = add(x = reduce_mean_29_cast, y = add_18_y_0_to_fp16)[name = tensor<string, []>("add_18_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_9_cast = sqrt(x = add_18_cast)[name = tensor<string, []>("sqrt_9_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_9_cast = real_div(x = sub_18_cast, y = sqrt_9_cast)[name = tensor<string, []>("real_div_9_cast")];
            tensor<int32, [4]> reshape_37_shape_0 = const()[name = tensor<string, []>("reshape_37_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_37_cast = reshape(shape = reshape_37_shape_0, x = real_div_9_cast)[name = tensor<string, []>("reshape_37_cast")];
            tensor<fp16, [512]> add_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_19_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39919680)))];
            tensor<fp16, [512]> add_19_beta_0_to_fp16 = const()[name = tensor<string, []>("add_19_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39920768)))];
            tensor<fp16, []> add_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_19_cast = batch_norm(beta = add_19_beta_0_to_fp16, epsilon = add_19_epsilon_0_to_fp16, gamma = add_19_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_37_cast)[name = tensor<string, []>("add_19_cast")];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_39_cast = silu(x = add_19_cast)[name = tensor<string, []>("hidden_states_39_cast")];
            tensor<int32, [2]> var_259 = const()[name = tensor<string, []>("op_259"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_261 = const()[name = tensor<string, []>("op_261"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_55_pad_type_0 = const()[name = tensor<string, []>("input_55_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_55_pad_0 = const()[name = tensor<string, []>("input_55_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39921856)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44640512)))];
            tensor<fp16, [1, 512, 64, 64]> input_55_cast = conv(bias = decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16, dilations = var_261, groups = var_26, pad = input_55_pad_0, pad_type = input_55_pad_type_0, strides = var_259, weight = decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16, x = hidden_states_39_cast)[name = tensor<string, []>("input_55_cast")];
            tensor<int32, [5]> reshape_40_shape_0 = const()[name = tensor<string, []>("reshape_40_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])];
            tensor<fp16, [1, 32, 16, 64, 64]> reshape_40_cast = reshape(shape = reshape_40_shape_0, x = input_55_cast)[name = tensor<string, []>("reshape_40_cast")];
            tensor<int32, [3]> reduce_mean_30_axes_0 = const()[name = tensor<string, []>("reduce_mean_30_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_30_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_30_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_30_cast = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40_cast)[name = tensor<string, []>("reduce_mean_30_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> sub_20_cast = sub(x = reshape_40_cast, y = reduce_mean_30_cast)[name = tensor<string, []>("sub_20_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> square_10_cast = square(x = sub_20_cast)[name = tensor<string, []>("square_10_cast")];
            tensor<int32, [3]> reduce_mean_32_axes_0 = const()[name = tensor<string, []>("reduce_mean_32_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_32_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_32_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_32_cast = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10_cast)[name = tensor<string, []>("reduce_mean_32_cast")];
            tensor<fp16, []> add_20_y_0_to_fp16 = const()[name = tensor<string, []>("add_20_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_20_cast = add(x = reduce_mean_32_cast, y = add_20_y_0_to_fp16)[name = tensor<string, []>("add_20_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_10_cast = sqrt(x = add_20_cast)[name = tensor<string, []>("sqrt_10_cast")];
            tensor<fp16, [1, 32, 16, 64, 64]> real_div_10_cast = real_div(x = sub_20_cast, y = sqrt_10_cast)[name = tensor<string, []>("real_div_10_cast")];
            tensor<int32, [4]> reshape_41_shape_0 = const()[name = tensor<string, []>("reshape_41_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])];
            tensor<fp16, [1, 512, 64, 64]> reshape_41_cast = reshape(shape = reshape_41_shape_0, x = real_div_10_cast)[name = tensor<string, []>("reshape_41_cast")];
            tensor<fp16, [512]> add_21_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_21_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44641600)))];
            tensor<fp16, [512]> add_21_beta_0_to_fp16 = const()[name = tensor<string, []>("add_21_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44642688)))];
            tensor<fp16, []> add_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 64, 64]> add_21_cast = batch_norm(beta = add_21_beta_0_to_fp16, epsilon = add_21_epsilon_0_to_fp16, gamma = add_21_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_41_cast)[name = tensor<string, []>("add_21_cast")];
            tensor<fp16, [1, 512, 64, 64]> input_59_cast = silu(x = add_21_cast)[name = tensor<string, []>("input_59_cast")];
            tensor<int32, [2]> var_271 = const()[name = tensor<string, []>("op_271"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_273 = const()[name = tensor<string, []>("op_273"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_43_pad_type_0 = const()[name = tensor<string, []>("hidden_states_43_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_43_pad_0 = const()[name = tensor<string, []>("hidden_states_43_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44643776)))];
            tensor<fp16, [512]> decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49362432)))];
            tensor<fp16, [1, 512, 64, 64]> hidden_states_43_cast = conv(bias = decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16, dilations = var_273, groups = var_26, pad = hidden_states_43_pad_0, pad_type = hidden_states_43_pad_type_0, strides = var_271, weight = decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16, x = input_59_cast)[name = tensor<string, []>("hidden_states_43_cast")];
            tensor<fp16, [1, 512, 64, 64]> var_276_cast = add(x = var_246_cast, y = hidden_states_43_cast)[name = tensor<string, []>("op_276_cast")];
            tensor<fp32, []> hidden_states_47_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_47_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp32, []> hidden_states_47_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_47_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_47_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_47_scale_factor_height_0, scale_factor_width = hidden_states_47_scale_factor_width_0, x = var_276_cast)[name = tensor<string, []>("hidden_states_47_cast")];
            tensor<int32, [2]> var_284 = const()[name = tensor<string, []>("op_284"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_286 = const()[name = tensor<string, []>("op_286"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_61_pad_type_0 = const()[name = tensor<string, []>("input_61_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_61_pad_0 = const()[name = tensor<string, []>("input_61_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49363520)))];
            tensor<fp16, [512]> decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54082176)))];
            tensor<fp16, [1, 512, 128, 128]> input_61_cast = conv(bias = decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16, dilations = var_286, groups = var_26, pad = input_61_pad_0, pad_type = input_61_pad_type_0, strides = var_284, weight = decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16, x = hidden_states_47_cast)[name = tensor<string, []>("input_61_cast")];
            tensor<int32, [5]> reshape_44_shape_0 = const()[name = tensor<string, []>("reshape_44_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_44_cast = reshape(shape = reshape_44_shape_0, x = input_61_cast)[name = tensor<string, []>("reshape_44_cast")];
            tensor<int32, [3]> reduce_mean_33_axes_0 = const()[name = tensor<string, []>("reduce_mean_33_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_33_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_33_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_33_cast = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44_cast)[name = tensor<string, []>("reduce_mean_33_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_22_cast = sub(x = reshape_44_cast, y = reduce_mean_33_cast)[name = tensor<string, []>("sub_22_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_11_cast = square(x = sub_22_cast)[name = tensor<string, []>("square_11_cast")];
            tensor<int32, [3]> reduce_mean_35_axes_0 = const()[name = tensor<string, []>("reduce_mean_35_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_35_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_35_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_35_cast = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11_cast)[name = tensor<string, []>("reduce_mean_35_cast")];
            tensor<fp16, []> add_22_y_0_to_fp16 = const()[name = tensor<string, []>("add_22_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_22_cast = add(x = reduce_mean_35_cast, y = add_22_y_0_to_fp16)[name = tensor<string, []>("add_22_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_11_cast = sqrt(x = add_22_cast)[name = tensor<string, []>("sqrt_11_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_11_cast = real_div(x = sub_22_cast, y = sqrt_11_cast)[name = tensor<string, []>("real_div_11_cast")];
            tensor<int32, [4]> reshape_45_shape_0 = const()[name = tensor<string, []>("reshape_45_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_45_cast = reshape(shape = reshape_45_shape_0, x = real_div_11_cast)[name = tensor<string, []>("reshape_45_cast")];
            tensor<fp16, [512]> add_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_23_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54083264)))];
            tensor<fp16, [512]> add_23_beta_0_to_fp16 = const()[name = tensor<string, []>("add_23_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54084352)))];
            tensor<fp16, []> add_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_23_cast = batch_norm(beta = add_23_beta_0_to_fp16, epsilon = add_23_epsilon_0_to_fp16, gamma = add_23_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_45_cast)[name = tensor<string, []>("add_23_cast")];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_49_cast = silu(x = add_23_cast)[name = tensor<string, []>("hidden_states_49_cast")];
            tensor<int32, [2]> var_307 = const()[name = tensor<string, []>("op_307"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_309 = const()[name = tensor<string, []>("op_309"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_65_pad_type_0 = const()[name = tensor<string, []>("input_65_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_65_pad_0 = const()[name = tensor<string, []>("input_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54085440)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58804096)))];
            tensor<fp16, [1, 512, 128, 128]> input_65_cast = conv(bias = decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16, dilations = var_309, groups = var_26, pad = input_65_pad_0, pad_type = input_65_pad_type_0, strides = var_307, weight = decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16, x = hidden_states_49_cast)[name = tensor<string, []>("input_65_cast")];
            tensor<int32, [5]> reshape_48_shape_0 = const()[name = tensor<string, []>("reshape_48_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_48_cast = reshape(shape = reshape_48_shape_0, x = input_65_cast)[name = tensor<string, []>("reshape_48_cast")];
            tensor<int32, [3]> reduce_mean_36_axes_0 = const()[name = tensor<string, []>("reduce_mean_36_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_36_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_36_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_36_cast = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48_cast)[name = tensor<string, []>("reduce_mean_36_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_24_cast = sub(x = reshape_48_cast, y = reduce_mean_36_cast)[name = tensor<string, []>("sub_24_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_12_cast = square(x = sub_24_cast)[name = tensor<string, []>("square_12_cast")];
            tensor<int32, [3]> reduce_mean_38_axes_0 = const()[name = tensor<string, []>("reduce_mean_38_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_38_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_38_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_38_cast = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12_cast)[name = tensor<string, []>("reduce_mean_38_cast")];
            tensor<fp16, []> add_24_y_0_to_fp16 = const()[name = tensor<string, []>("add_24_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_24_cast = add(x = reduce_mean_38_cast, y = add_24_y_0_to_fp16)[name = tensor<string, []>("add_24_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_12_cast = sqrt(x = add_24_cast)[name = tensor<string, []>("sqrt_12_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_12_cast = real_div(x = sub_24_cast, y = sqrt_12_cast)[name = tensor<string, []>("real_div_12_cast")];
            tensor<int32, [4]> reshape_49_shape_0 = const()[name = tensor<string, []>("reshape_49_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_49_cast = reshape(shape = reshape_49_shape_0, x = real_div_12_cast)[name = tensor<string, []>("reshape_49_cast")];
            tensor<fp16, [512]> add_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_25_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58805184)))];
            tensor<fp16, [512]> add_25_beta_0_to_fp16 = const()[name = tensor<string, []>("add_25_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58806272)))];
            tensor<fp16, []> add_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_25_cast = batch_norm(beta = add_25_beta_0_to_fp16, epsilon = add_25_epsilon_0_to_fp16, gamma = add_25_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_49_cast)[name = tensor<string, []>("add_25_cast")];
            tensor<fp16, [1, 512, 128, 128]> input_69_cast = silu(x = add_25_cast)[name = tensor<string, []>("input_69_cast")];
            tensor<int32, [2]> var_319 = const()[name = tensor<string, []>("op_319"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_321 = const()[name = tensor<string, []>("op_321"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_53_pad_type_0 = const()[name = tensor<string, []>("hidden_states_53_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_53_pad_0 = const()[name = tensor<string, []>("hidden_states_53_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58807360)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63526016)))];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_53_cast = conv(bias = decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16, dilations = var_321, groups = var_26, pad = hidden_states_53_pad_0, pad_type = hidden_states_53_pad_type_0, strides = var_319, weight = decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16, x = input_69_cast)[name = tensor<string, []>("hidden_states_53_cast")];
            tensor<fp16, [1, 512, 128, 128]> var_324_cast = add(x = input_61_cast, y = hidden_states_53_cast)[name = tensor<string, []>("op_324_cast")];
            tensor<int32, [5]> reshape_52_shape_0 = const()[name = tensor<string, []>("reshape_52_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_52_cast = reshape(shape = reshape_52_shape_0, x = var_324_cast)[name = tensor<string, []>("reshape_52_cast")];
            tensor<int32, [3]> reduce_mean_39_axes_0 = const()[name = tensor<string, []>("reduce_mean_39_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_39_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_39_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_39_cast = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52_cast)[name = tensor<string, []>("reduce_mean_39_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_26_cast = sub(x = reshape_52_cast, y = reduce_mean_39_cast)[name = tensor<string, []>("sub_26_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_13_cast = square(x = sub_26_cast)[name = tensor<string, []>("square_13_cast")];
            tensor<int32, [3]> reduce_mean_41_axes_0 = const()[name = tensor<string, []>("reduce_mean_41_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_41_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_41_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_41_cast = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13_cast)[name = tensor<string, []>("reduce_mean_41_cast")];
            tensor<fp16, []> add_26_y_0_to_fp16 = const()[name = tensor<string, []>("add_26_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_26_cast = add(x = reduce_mean_41_cast, y = add_26_y_0_to_fp16)[name = tensor<string, []>("add_26_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_13_cast = sqrt(x = add_26_cast)[name = tensor<string, []>("sqrt_13_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_13_cast = real_div(x = sub_26_cast, y = sqrt_13_cast)[name = tensor<string, []>("real_div_13_cast")];
            tensor<int32, [4]> reshape_53_shape_0 = const()[name = tensor<string, []>("reshape_53_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_53_cast = reshape(shape = reshape_53_shape_0, x = real_div_13_cast)[name = tensor<string, []>("reshape_53_cast")];
            tensor<fp16, [512]> add_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_27_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63527104)))];
            tensor<fp16, [512]> add_27_beta_0_to_fp16 = const()[name = tensor<string, []>("add_27_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63528192)))];
            tensor<fp16, []> add_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_27_cast = batch_norm(beta = add_27_beta_0_to_fp16, epsilon = add_27_epsilon_0_to_fp16, gamma = add_27_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_53_cast)[name = tensor<string, []>("add_27_cast")];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_55_cast = silu(x = add_27_cast)[name = tensor<string, []>("hidden_states_55_cast")];
            tensor<int32, [2]> var_337 = const()[name = tensor<string, []>("op_337"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_339 = const()[name = tensor<string, []>("op_339"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_75_pad_type_0 = const()[name = tensor<string, []>("input_75_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_75_pad_0 = const()[name = tensor<string, []>("input_75_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63529280)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68247936)))];
            tensor<fp16, [1, 512, 128, 128]> input_75_cast = conv(bias = decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16, dilations = var_339, groups = var_26, pad = input_75_pad_0, pad_type = input_75_pad_type_0, strides = var_337, weight = decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16, x = hidden_states_55_cast)[name = tensor<string, []>("input_75_cast")];
            tensor<int32, [5]> reshape_56_shape_0 = const()[name = tensor<string, []>("reshape_56_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_56_cast = reshape(shape = reshape_56_shape_0, x = input_75_cast)[name = tensor<string, []>("reshape_56_cast")];
            tensor<int32, [3]> reduce_mean_42_axes_0 = const()[name = tensor<string, []>("reduce_mean_42_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_42_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_42_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_42_cast = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56_cast)[name = tensor<string, []>("reduce_mean_42_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_28_cast = sub(x = reshape_56_cast, y = reduce_mean_42_cast)[name = tensor<string, []>("sub_28_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_14_cast = square(x = sub_28_cast)[name = tensor<string, []>("square_14_cast")];
            tensor<int32, [3]> reduce_mean_44_axes_0 = const()[name = tensor<string, []>("reduce_mean_44_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_44_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_44_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_44_cast = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14_cast)[name = tensor<string, []>("reduce_mean_44_cast")];
            tensor<fp16, []> add_28_y_0_to_fp16 = const()[name = tensor<string, []>("add_28_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_28_cast = add(x = reduce_mean_44_cast, y = add_28_y_0_to_fp16)[name = tensor<string, []>("add_28_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_14_cast = sqrt(x = add_28_cast)[name = tensor<string, []>("sqrt_14_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_14_cast = real_div(x = sub_28_cast, y = sqrt_14_cast)[name = tensor<string, []>("real_div_14_cast")];
            tensor<int32, [4]> reshape_57_shape_0 = const()[name = tensor<string, []>("reshape_57_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_57_cast = reshape(shape = reshape_57_shape_0, x = real_div_14_cast)[name = tensor<string, []>("reshape_57_cast")];
            tensor<fp16, [512]> add_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_29_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68249024)))];
            tensor<fp16, [512]> add_29_beta_0_to_fp16 = const()[name = tensor<string, []>("add_29_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68250112)))];
            tensor<fp16, []> add_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_29_cast = batch_norm(beta = add_29_beta_0_to_fp16, epsilon = add_29_epsilon_0_to_fp16, gamma = add_29_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_57_cast)[name = tensor<string, []>("add_29_cast")];
            tensor<fp16, [1, 512, 128, 128]> input_79_cast = silu(x = add_29_cast)[name = tensor<string, []>("input_79_cast")];
            tensor<int32, [2]> var_349 = const()[name = tensor<string, []>("op_349"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_59_pad_type_0 = const()[name = tensor<string, []>("hidden_states_59_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_59_pad_0 = const()[name = tensor<string, []>("hidden_states_59_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68251200)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72969856)))];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_59_cast = conv(bias = decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16, dilations = var_351, groups = var_26, pad = hidden_states_59_pad_0, pad_type = hidden_states_59_pad_type_0, strides = var_349, weight = decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16, x = input_79_cast)[name = tensor<string, []>("hidden_states_59_cast")];
            tensor<fp16, [1, 512, 128, 128]> var_354_cast = add(x = var_324_cast, y = hidden_states_59_cast)[name = tensor<string, []>("op_354_cast")];
            tensor<int32, [5]> reshape_60_shape_0 = const()[name = tensor<string, []>("reshape_60_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_60_cast = reshape(shape = reshape_60_shape_0, x = var_354_cast)[name = tensor<string, []>("reshape_60_cast")];
            tensor<int32, [3]> reduce_mean_45_axes_0 = const()[name = tensor<string, []>("reduce_mean_45_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_45_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_45_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_45_cast = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60_cast)[name = tensor<string, []>("reduce_mean_45_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_30_cast = sub(x = reshape_60_cast, y = reduce_mean_45_cast)[name = tensor<string, []>("sub_30_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_15_cast = square(x = sub_30_cast)[name = tensor<string, []>("square_15_cast")];
            tensor<int32, [3]> reduce_mean_47_axes_0 = const()[name = tensor<string, []>("reduce_mean_47_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_47_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_47_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_47_cast = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15_cast)[name = tensor<string, []>("reduce_mean_47_cast")];
            tensor<fp16, []> add_30_y_0_to_fp16 = const()[name = tensor<string, []>("add_30_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_30_cast = add(x = reduce_mean_47_cast, y = add_30_y_0_to_fp16)[name = tensor<string, []>("add_30_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_15_cast = sqrt(x = add_30_cast)[name = tensor<string, []>("sqrt_15_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_15_cast = real_div(x = sub_30_cast, y = sqrt_15_cast)[name = tensor<string, []>("real_div_15_cast")];
            tensor<int32, [4]> reshape_61_shape_0 = const()[name = tensor<string, []>("reshape_61_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_61_cast = reshape(shape = reshape_61_shape_0, x = real_div_15_cast)[name = tensor<string, []>("reshape_61_cast")];
            tensor<fp16, [512]> add_31_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_31_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72970944)))];
            tensor<fp16, [512]> add_31_beta_0_to_fp16 = const()[name = tensor<string, []>("add_31_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72972032)))];
            tensor<fp16, []> add_31_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_31_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_31_cast = batch_norm(beta = add_31_beta_0_to_fp16, epsilon = add_31_epsilon_0_to_fp16, gamma = add_31_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_61_cast)[name = tensor<string, []>("add_31_cast")];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_61_cast = silu(x = add_31_cast)[name = tensor<string, []>("hidden_states_61_cast")];
            tensor<int32, [2]> var_367 = const()[name = tensor<string, []>("op_367"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_369 = const()[name = tensor<string, []>("op_369"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_85_pad_type_0 = const()[name = tensor<string, []>("input_85_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_85_pad_0 = const()[name = tensor<string, []>("input_85_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72973120)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77691776)))];
            tensor<fp16, [1, 512, 128, 128]> input_85_cast = conv(bias = decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16, dilations = var_369, groups = var_26, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = var_367, weight = decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16, x = hidden_states_61_cast)[name = tensor<string, []>("input_85_cast")];
            tensor<int32, [5]> reshape_64_shape_0 = const()[name = tensor<string, []>("reshape_64_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])];
            tensor<fp16, [1, 32, 16, 128, 128]> reshape_64_cast = reshape(shape = reshape_64_shape_0, x = input_85_cast)[name = tensor<string, []>("reshape_64_cast")];
            tensor<int32, [3]> reduce_mean_48_axes_0 = const()[name = tensor<string, []>("reduce_mean_48_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_48_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_48_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_48_cast = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64_cast)[name = tensor<string, []>("reduce_mean_48_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> sub_32_cast = sub(x = reshape_64_cast, y = reduce_mean_48_cast)[name = tensor<string, []>("sub_32_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> square_16_cast = square(x = sub_32_cast)[name = tensor<string, []>("square_16_cast")];
            tensor<int32, [3]> reduce_mean_50_axes_0 = const()[name = tensor<string, []>("reduce_mean_50_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_50_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_50_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_50_cast = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16_cast)[name = tensor<string, []>("reduce_mean_50_cast")];
            tensor<fp16, []> add_32_y_0_to_fp16 = const()[name = tensor<string, []>("add_32_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_32_cast = add(x = reduce_mean_50_cast, y = add_32_y_0_to_fp16)[name = tensor<string, []>("add_32_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_16_cast = sqrt(x = add_32_cast)[name = tensor<string, []>("sqrt_16_cast")];
            tensor<fp16, [1, 32, 16, 128, 128]> real_div_16_cast = real_div(x = sub_32_cast, y = sqrt_16_cast)[name = tensor<string, []>("real_div_16_cast")];
            tensor<int32, [4]> reshape_65_shape_0 = const()[name = tensor<string, []>("reshape_65_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])];
            tensor<fp16, [1, 512, 128, 128]> reshape_65_cast = reshape(shape = reshape_65_shape_0, x = real_div_16_cast)[name = tensor<string, []>("reshape_65_cast")];
            tensor<fp16, [512]> add_33_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_33_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77692864)))];
            tensor<fp16, [512]> add_33_beta_0_to_fp16 = const()[name = tensor<string, []>("add_33_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77693952)))];
            tensor<fp16, []> add_33_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_33_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 128, 128]> add_33_cast = batch_norm(beta = add_33_beta_0_to_fp16, epsilon = add_33_epsilon_0_to_fp16, gamma = add_33_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_65_cast)[name = tensor<string, []>("add_33_cast")];
            tensor<fp16, [1, 512, 128, 128]> input_89_cast = silu(x = add_33_cast)[name = tensor<string, []>("input_89_cast")];
            tensor<int32, [2]> var_379 = const()[name = tensor<string, []>("op_379"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_381 = const()[name = tensor<string, []>("op_381"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_65_pad_type_0 = const()[name = tensor<string, []>("hidden_states_65_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_65_pad_0 = const()[name = tensor<string, []>("hidden_states_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77695040)))];
            tensor<fp16, [512]> decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82413696)))];
            tensor<fp16, [1, 512, 128, 128]> hidden_states_65_cast = conv(bias = decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16, dilations = var_381, groups = var_26, pad = hidden_states_65_pad_0, pad_type = hidden_states_65_pad_type_0, strides = var_379, weight = decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16, x = input_89_cast)[name = tensor<string, []>("hidden_states_65_cast")];
            tensor<fp16, [1, 512, 128, 128]> var_384_cast = add(x = var_354_cast, y = hidden_states_65_cast)[name = tensor<string, []>("op_384_cast")];
            tensor<fp32, []> hidden_states_69_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_69_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp32, []> hidden_states_69_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_69_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp16, [1, 512, 256, 256]> hidden_states_69_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_69_scale_factor_height_0, scale_factor_width = hidden_states_69_scale_factor_width_0, x = var_384_cast)[name = tensor<string, []>("hidden_states_69_cast")];
            tensor<int32, [2]> var_392 = const()[name = tensor<string, []>("op_392"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_394 = const()[name = tensor<string, []>("op_394"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_91_pad_type_0 = const()[name = tensor<string, []>("input_91_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_91_pad_0 = const()[name = tensor<string, []>("input_91_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82414784)))];
            tensor<fp16, [512]> decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87133440)))];
            tensor<fp16, [1, 512, 256, 256]> input_91_cast = conv(bias = decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16, dilations = var_394, groups = var_26, pad = input_91_pad_0, pad_type = input_91_pad_type_0, strides = var_392, weight = decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16, x = hidden_states_69_cast)[name = tensor<string, []>("input_91_cast")];
            tensor<int32, [5]> reshape_68_shape_0 = const()[name = tensor<string, []>("reshape_68_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 256, 256])];
            tensor<fp16, [1, 32, 16, 256, 256]> reshape_68_cast = reshape(shape = reshape_68_shape_0, x = input_91_cast)[name = tensor<string, []>("reshape_68_cast")];
            tensor<int32, [3]> reduce_mean_51_axes_0 = const()[name = tensor<string, []>("reduce_mean_51_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_51_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_51_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_51_cast = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68_cast)[name = tensor<string, []>("reduce_mean_51_cast")];
            tensor<fp16, [1, 32, 16, 256, 256]> sub_34_cast = sub(x = reshape_68_cast, y = reduce_mean_51_cast)[name = tensor<string, []>("sub_34_cast")];
            tensor<fp16, [1, 32, 16, 256, 256]> square_17_cast = square(x = sub_34_cast)[name = tensor<string, []>("square_17_cast")];
            tensor<int32, [3]> reduce_mean_53_axes_0 = const()[name = tensor<string, []>("reduce_mean_53_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_53_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_53_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_53_cast = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17_cast)[name = tensor<string, []>("reduce_mean_53_cast")];
            tensor<fp16, []> add_34_y_0_to_fp16 = const()[name = tensor<string, []>("add_34_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_34_cast = add(x = reduce_mean_53_cast, y = add_34_y_0_to_fp16)[name = tensor<string, []>("add_34_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_17_cast = sqrt(x = add_34_cast)[name = tensor<string, []>("sqrt_17_cast")];
            tensor<fp16, [1, 32, 16, 256, 256]> real_div_17_cast = real_div(x = sub_34_cast, y = sqrt_17_cast)[name = tensor<string, []>("real_div_17_cast")];
            tensor<int32, [4]> reshape_69_shape_0 = const()[name = tensor<string, []>("reshape_69_shape_0"), val = tensor<int32, [4]>([1, 512, 256, 256])];
            tensor<fp16, [1, 512, 256, 256]> reshape_69_cast = reshape(shape = reshape_69_shape_0, x = real_div_17_cast)[name = tensor<string, []>("reshape_69_cast")];
            tensor<fp16, [512]> add_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_35_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87134528)))];
            tensor<fp16, [512]> add_35_beta_0_to_fp16 = const()[name = tensor<string, []>("add_35_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87135616)))];
            tensor<fp16, []> add_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 512, 256, 256]> add_35_cast = batch_norm(beta = add_35_beta_0_to_fp16, epsilon = add_35_epsilon_0_to_fp16, gamma = add_35_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_69_cast)[name = tensor<string, []>("add_35_cast")];
            tensor<fp16, [1, 512, 256, 256]> hidden_states_71_cast = silu(x = add_35_cast)[name = tensor<string, []>("hidden_states_71_cast")];
            tensor<int32, [2]> var_416 = const()[name = tensor<string, []>("op_416"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_418 = const()[name = tensor<string, []>("op_418"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_95_pad_type_0 = const()[name = tensor<string, []>("input_95_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_95_pad_0 = const()[name = tensor<string, []>("input_95_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 512, 3, 3]> decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [256, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87136704)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89496064)))];
            tensor<fp16, [1, 256, 256, 256]> input_95_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16, dilations = var_418, groups = var_26, pad = input_95_pad_0, pad_type = input_95_pad_type_0, strides = var_416, weight = decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16, x = hidden_states_71_cast)[name = tensor<string, []>("input_95_cast")];
            tensor<int32, [5]> reshape_72_shape_0 = const()[name = tensor<string, []>("reshape_72_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])];
            tensor<fp16, [1, 32, 8, 256, 256]> reshape_72_cast = reshape(shape = reshape_72_shape_0, x = input_95_cast)[name = tensor<string, []>("reshape_72_cast")];
            tensor<int32, [3]> reduce_mean_54_axes_0 = const()[name = tensor<string, []>("reduce_mean_54_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_54_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_54_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_54_cast = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72_cast)[name = tensor<string, []>("reduce_mean_54_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> sub_36_cast = sub(x = reshape_72_cast, y = reduce_mean_54_cast)[name = tensor<string, []>("sub_36_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> square_18_cast = square(x = sub_36_cast)[name = tensor<string, []>("square_18_cast")];
            tensor<int32, [3]> reduce_mean_56_axes_0 = const()[name = tensor<string, []>("reduce_mean_56_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_56_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_56_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_56_cast = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18_cast)[name = tensor<string, []>("reduce_mean_56_cast")];
            tensor<fp16, []> add_36_y_0_to_fp16 = const()[name = tensor<string, []>("add_36_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_36_cast = add(x = reduce_mean_56_cast, y = add_36_y_0_to_fp16)[name = tensor<string, []>("add_36_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_18_cast = sqrt(x = add_36_cast)[name = tensor<string, []>("sqrt_18_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> real_div_18_cast = real_div(x = sub_36_cast, y = sqrt_18_cast)[name = tensor<string, []>("real_div_18_cast")];
            tensor<int32, [4]> reshape_73_shape_0 = const()[name = tensor<string, []>("reshape_73_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])];
            tensor<fp16, [1, 256, 256, 256]> reshape_73_cast = reshape(shape = reshape_73_shape_0, x = real_div_18_cast)[name = tensor<string, []>("reshape_73_cast")];
            tensor<fp16, [256]> add_37_mean_0_to_fp16 = const()[name = tensor<string, []>("add_37_mean_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89496640)))];
            tensor<fp16, [256]> add_37_variance_0_to_fp16 = const()[name = tensor<string, []>("add_37_variance_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89497216)))];
            tensor<fp16, [256]> add_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_37_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89497792)))];
            tensor<fp16, [256]> add_37_beta_0_to_fp16 = const()[name = tensor<string, []>("add_37_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89498368)))];
            tensor<fp16, []> add_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 256, 256]> add_37_cast = batch_norm(beta = add_37_beta_0_to_fp16, epsilon = add_37_epsilon_0_to_fp16, gamma = add_37_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_73_cast)[name = tensor<string, []>("add_37_cast")];
            tensor<fp16, [1, 256, 256, 256]> input_99_cast = silu(x = add_37_cast)[name = tensor<string, []>("input_99_cast")];
            tensor<int32, [2]> var_428 = const()[name = tensor<string, []>("op_428"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_430 = const()[name = tensor<string, []>("op_430"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_75_pad_type_0 = const()[name = tensor<string, []>("hidden_states_75_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_75_pad_0 = const()[name = tensor<string, []>("hidden_states_75_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89498944)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90678656)))];
            tensor<fp16, [1, 256, 256, 256]> hidden_states_75_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16, dilations = var_430, groups = var_26, pad = hidden_states_75_pad_0, pad_type = hidden_states_75_pad_type_0, strides = var_428, weight = decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16, x = input_99_cast)[name = tensor<string, []>("hidden_states_75_cast")];
            tensor<int32, [2]> var_435 = const()[name = tensor<string, []>("op_435"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_437 = const()[name = tensor<string, []>("op_437"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_tensor_1_pad_type_0 = const()[name = tensor<string, []>("input_tensor_1_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_tensor_1_pad_0 = const()[name = tensor<string, []>("input_tensor_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<fp16, [256, 512, 1, 1]> decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [256, 512, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90679232)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90941440)))];
            tensor<fp16, [1, 256, 256, 256]> input_tensor_1_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_437, groups = var_26, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = var_435, weight = decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16, x = input_91_cast)[name = tensor<string, []>("input_tensor_1_cast")];
            tensor<fp16, [1, 256, 256, 256]> var_440_cast = add(x = input_tensor_1_cast, y = hidden_states_75_cast)[name = tensor<string, []>("op_440_cast")];
            tensor<int32, [5]> reshape_76_shape_0 = const()[name = tensor<string, []>("reshape_76_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])];
            tensor<fp16, [1, 32, 8, 256, 256]> reshape_76_cast = reshape(shape = reshape_76_shape_0, x = var_440_cast)[name = tensor<string, []>("reshape_76_cast")];
            tensor<int32, [3]> reduce_mean_57_axes_0 = const()[name = tensor<string, []>("reduce_mean_57_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_57_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_57_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_57_cast = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76_cast)[name = tensor<string, []>("reduce_mean_57_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> sub_38_cast = sub(x = reshape_76_cast, y = reduce_mean_57_cast)[name = tensor<string, []>("sub_38_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> square_19_cast = square(x = sub_38_cast)[name = tensor<string, []>("square_19_cast")];
            tensor<int32, [3]> reduce_mean_59_axes_0 = const()[name = tensor<string, []>("reduce_mean_59_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_59_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_59_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_59_cast = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19_cast)[name = tensor<string, []>("reduce_mean_59_cast")];
            tensor<fp16, []> add_38_y_0_to_fp16 = const()[name = tensor<string, []>("add_38_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_38_cast = add(x = reduce_mean_59_cast, y = add_38_y_0_to_fp16)[name = tensor<string, []>("add_38_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_19_cast = sqrt(x = add_38_cast)[name = tensor<string, []>("sqrt_19_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> real_div_19_cast = real_div(x = sub_38_cast, y = sqrt_19_cast)[name = tensor<string, []>("real_div_19_cast")];
            tensor<int32, [4]> reshape_77_shape_0 = const()[name = tensor<string, []>("reshape_77_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])];
            tensor<fp16, [1, 256, 256, 256]> reshape_77_cast = reshape(shape = reshape_77_shape_0, x = real_div_19_cast)[name = tensor<string, []>("reshape_77_cast")];
            tensor<fp16, [256]> add_39_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_39_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90942016)))];
            tensor<fp16, [256]> add_39_beta_0_to_fp16 = const()[name = tensor<string, []>("add_39_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90942592)))];
            tensor<fp16, []> add_39_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_39_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 256, 256]> add_39_cast = batch_norm(beta = add_39_beta_0_to_fp16, epsilon = add_39_epsilon_0_to_fp16, gamma = add_39_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_77_cast)[name = tensor<string, []>("add_39_cast")];
            tensor<fp16, [1, 256, 256, 256]> hidden_states_77_cast = silu(x = add_39_cast)[name = tensor<string, []>("hidden_states_77_cast")];
            tensor<int32, [2]> var_453 = const()[name = tensor<string, []>("op_453"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_455 = const()[name = tensor<string, []>("op_455"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_105_pad_type_0 = const()[name = tensor<string, []>("input_105_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_105_pad_0 = const()[name = tensor<string, []>("input_105_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90943168)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92122880)))];
            tensor<fp16, [1, 256, 256, 256]> input_105_cast = conv(bias = decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16, dilations = var_455, groups = var_26, pad = input_105_pad_0, pad_type = input_105_pad_type_0, strides = var_453, weight = decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16, x = hidden_states_77_cast)[name = tensor<string, []>("input_105_cast")];
            tensor<int32, [5]> reshape_80_shape_0 = const()[name = tensor<string, []>("reshape_80_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])];
            tensor<fp16, [1, 32, 8, 256, 256]> reshape_80_cast = reshape(shape = reshape_80_shape_0, x = input_105_cast)[name = tensor<string, []>("reshape_80_cast")];
            tensor<int32, [3]> reduce_mean_60_axes_0 = const()[name = tensor<string, []>("reduce_mean_60_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_60_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_60_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_60_cast = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80_cast)[name = tensor<string, []>("reduce_mean_60_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> sub_40_cast = sub(x = reshape_80_cast, y = reduce_mean_60_cast)[name = tensor<string, []>("sub_40_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> square_20_cast = square(x = sub_40_cast)[name = tensor<string, []>("square_20_cast")];
            tensor<int32, [3]> reduce_mean_62_axes_0 = const()[name = tensor<string, []>("reduce_mean_62_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_62_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_62_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_62_cast = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20_cast)[name = tensor<string, []>("reduce_mean_62_cast")];
            tensor<fp16, []> add_40_y_0_to_fp16 = const()[name = tensor<string, []>("add_40_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_40_cast = add(x = reduce_mean_62_cast, y = add_40_y_0_to_fp16)[name = tensor<string, []>("add_40_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_20_cast = sqrt(x = add_40_cast)[name = tensor<string, []>("sqrt_20_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> real_div_20_cast = real_div(x = sub_40_cast, y = sqrt_20_cast)[name = tensor<string, []>("real_div_20_cast")];
            tensor<int32, [4]> reshape_81_shape_0 = const()[name = tensor<string, []>("reshape_81_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])];
            tensor<fp16, [1, 256, 256, 256]> reshape_81_cast = reshape(shape = reshape_81_shape_0, x = real_div_20_cast)[name = tensor<string, []>("reshape_81_cast")];
            tensor<fp16, [256]> add_41_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_41_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92123456)))];
            tensor<fp16, [256]> add_41_beta_0_to_fp16 = const()[name = tensor<string, []>("add_41_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92124032)))];
            tensor<fp16, []> add_41_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_41_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 256, 256]> add_41_cast = batch_norm(beta = add_41_beta_0_to_fp16, epsilon = add_41_epsilon_0_to_fp16, gamma = add_41_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_81_cast)[name = tensor<string, []>("add_41_cast")];
            tensor<fp16, [1, 256, 256, 256]> input_109_cast = silu(x = add_41_cast)[name = tensor<string, []>("input_109_cast")];
            tensor<int32, [2]> var_465 = const()[name = tensor<string, []>("op_465"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_467 = const()[name = tensor<string, []>("op_467"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_81_pad_type_0 = const()[name = tensor<string, []>("hidden_states_81_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_81_pad_0 = const()[name = tensor<string, []>("hidden_states_81_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92124608)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93304320)))];
            tensor<fp16, [1, 256, 256, 256]> hidden_states_81_cast = conv(bias = decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16, dilations = var_467, groups = var_26, pad = hidden_states_81_pad_0, pad_type = hidden_states_81_pad_type_0, strides = var_465, weight = decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16, x = input_109_cast)[name = tensor<string, []>("hidden_states_81_cast")];
            tensor<fp16, [1, 256, 256, 256]> var_470_cast = add(x = var_440_cast, y = hidden_states_81_cast)[name = tensor<string, []>("op_470_cast")];
            tensor<int32, [5]> reshape_84_shape_0 = const()[name = tensor<string, []>("reshape_84_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])];
            tensor<fp16, [1, 32, 8, 256, 256]> reshape_84_cast = reshape(shape = reshape_84_shape_0, x = var_470_cast)[name = tensor<string, []>("reshape_84_cast")];
            tensor<int32, [3]> reduce_mean_63_axes_0 = const()[name = tensor<string, []>("reduce_mean_63_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_63_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_63_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_63_cast = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84_cast)[name = tensor<string, []>("reduce_mean_63_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> sub_42_cast = sub(x = reshape_84_cast, y = reduce_mean_63_cast)[name = tensor<string, []>("sub_42_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> square_21_cast = square(x = sub_42_cast)[name = tensor<string, []>("square_21_cast")];
            tensor<int32, [3]> reduce_mean_65_axes_0 = const()[name = tensor<string, []>("reduce_mean_65_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_65_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_65_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_65_cast = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21_cast)[name = tensor<string, []>("reduce_mean_65_cast")];
            tensor<fp16, []> add_42_y_0_to_fp16 = const()[name = tensor<string, []>("add_42_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_42_cast = add(x = reduce_mean_65_cast, y = add_42_y_0_to_fp16)[name = tensor<string, []>("add_42_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_21_cast = sqrt(x = add_42_cast)[name = tensor<string, []>("sqrt_21_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> real_div_21_cast = real_div(x = sub_42_cast, y = sqrt_21_cast)[name = tensor<string, []>("real_div_21_cast")];
            tensor<int32, [4]> reshape_85_shape_0 = const()[name = tensor<string, []>("reshape_85_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])];
            tensor<fp16, [1, 256, 256, 256]> reshape_85_cast = reshape(shape = reshape_85_shape_0, x = real_div_21_cast)[name = tensor<string, []>("reshape_85_cast")];
            tensor<fp16, [256]> add_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_43_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93304896)))];
            tensor<fp16, [256]> add_43_beta_0_to_fp16 = const()[name = tensor<string, []>("add_43_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93305472)))];
            tensor<fp16, []> add_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 256, 256]> add_43_cast = batch_norm(beta = add_43_beta_0_to_fp16, epsilon = add_43_epsilon_0_to_fp16, gamma = add_43_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_85_cast)[name = tensor<string, []>("add_43_cast")];
            tensor<fp16, [1, 256, 256, 256]> hidden_states_83_cast = silu(x = add_43_cast)[name = tensor<string, []>("hidden_states_83_cast")];
            tensor<int32, [2]> var_483 = const()[name = tensor<string, []>("op_483"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_485 = const()[name = tensor<string, []>("op_485"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_115_pad_type_0 = const()[name = tensor<string, []>("input_115_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_115_pad_0 = const()[name = tensor<string, []>("input_115_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93306048)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94485760)))];
            tensor<fp16, [1, 256, 256, 256]> input_115_cast = conv(bias = decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16, dilations = var_485, groups = var_26, pad = input_115_pad_0, pad_type = input_115_pad_type_0, strides = var_483, weight = decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16, x = hidden_states_83_cast)[name = tensor<string, []>("input_115_cast")];
            tensor<int32, [5]> reshape_88_shape_0 = const()[name = tensor<string, []>("reshape_88_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])];
            tensor<fp16, [1, 32, 8, 256, 256]> reshape_88_cast = reshape(shape = reshape_88_shape_0, x = input_115_cast)[name = tensor<string, []>("reshape_88_cast")];
            tensor<int32, [3]> reduce_mean_66_axes_0 = const()[name = tensor<string, []>("reduce_mean_66_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_66_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_66_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_66_cast = reduce_mean(axes = reduce_mean_66_axes_0, keep_dims = reduce_mean_66_keep_dims_0, x = reshape_88_cast)[name = tensor<string, []>("reduce_mean_66_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> sub_44_cast = sub(x = reshape_88_cast, y = reduce_mean_66_cast)[name = tensor<string, []>("sub_44_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> square_22_cast = square(x = sub_44_cast)[name = tensor<string, []>("square_22_cast")];
            tensor<int32, [3]> reduce_mean_68_axes_0 = const()[name = tensor<string, []>("reduce_mean_68_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_68_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_68_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_68_cast = reduce_mean(axes = reduce_mean_68_axes_0, keep_dims = reduce_mean_68_keep_dims_0, x = square_22_cast)[name = tensor<string, []>("reduce_mean_68_cast")];
            tensor<fp16, []> add_44_y_0_to_fp16 = const()[name = tensor<string, []>("add_44_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_44_cast = add(x = reduce_mean_68_cast, y = add_44_y_0_to_fp16)[name = tensor<string, []>("add_44_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_22_cast = sqrt(x = add_44_cast)[name = tensor<string, []>("sqrt_22_cast")];
            tensor<fp16, [1, 32, 8, 256, 256]> real_div_22_cast = real_div(x = sub_44_cast, y = sqrt_22_cast)[name = tensor<string, []>("real_div_22_cast")];
            tensor<int32, [4]> reshape_89_shape_0 = const()[name = tensor<string, []>("reshape_89_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])];
            tensor<fp16, [1, 256, 256, 256]> reshape_89_cast = reshape(shape = reshape_89_shape_0, x = real_div_22_cast)[name = tensor<string, []>("reshape_89_cast")];
            tensor<fp16, [256]> add_45_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_45_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94486336)))];
            tensor<fp16, [256]> add_45_beta_0_to_fp16 = const()[name = tensor<string, []>("add_45_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94486912)))];
            tensor<fp16, []> add_45_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_45_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 256, 256]> add_45_cast = batch_norm(beta = add_45_beta_0_to_fp16, epsilon = add_45_epsilon_0_to_fp16, gamma = add_45_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_89_cast)[name = tensor<string, []>("add_45_cast")];
            tensor<fp16, [1, 256, 256, 256]> input_119_cast = silu(x = add_45_cast)[name = tensor<string, []>("input_119_cast")];
            tensor<int32, [2]> var_495 = const()[name = tensor<string, []>("op_495"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_497 = const()[name = tensor<string, []>("op_497"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_87_pad_type_0 = const()[name = tensor<string, []>("hidden_states_87_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_87_pad_0 = const()[name = tensor<string, []>("hidden_states_87_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94487488)))];
            tensor<fp16, [256]> decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95667200)))];
            tensor<fp16, [1, 256, 256, 256]> hidden_states_87_cast = conv(bias = decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16, dilations = var_497, groups = var_26, pad = hidden_states_87_pad_0, pad_type = hidden_states_87_pad_type_0, strides = var_495, weight = decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16, x = input_119_cast)[name = tensor<string, []>("hidden_states_87_cast")];
            tensor<fp16, [1, 256, 256, 256]> var_500_cast = add(x = var_470_cast, y = hidden_states_87_cast)[name = tensor<string, []>("op_500_cast")];
            tensor<fp32, []> hidden_states_91_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_91_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp32, []> hidden_states_91_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_91_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)];
            tensor<fp16, [1, 256, 512, 512]> hidden_states_91_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_91_scale_factor_height_0, scale_factor_width = hidden_states_91_scale_factor_width_0, x = var_500_cast)[name = tensor<string, []>("hidden_states_91_cast")];
            tensor<int32, [2]> var_508 = const()[name = tensor<string, []>("op_508"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_510 = const()[name = tensor<string, []>("op_510"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_121_pad_type_0 = const()[name = tensor<string, []>("input_121_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_121_pad_0 = const()[name = tensor<string, []>("input_121_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95667776)))];
            tensor<fp16, [256]> decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96847488)))];
            tensor<fp16, [1, 256, 512, 512]> input_121_cast = conv(bias = decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16, dilations = var_510, groups = var_26, pad = input_121_pad_0, pad_type = input_121_pad_type_0, strides = var_508, weight = decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16, x = hidden_states_91_cast)[name = tensor<string, []>("input_121_cast")];
            tensor<int32, [5]> reshape_92_shape_0 = const()[name = tensor<string, []>("reshape_92_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 512, 512])];
            tensor<fp16, [1, 32, 8, 512, 512]> reshape_92_cast = reshape(shape = reshape_92_shape_0, x = input_121_cast)[name = tensor<string, []>("reshape_92_cast")];
            tensor<int32, [3]> reduce_mean_69_axes_0 = const()[name = tensor<string, []>("reduce_mean_69_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_69_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_69_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_69_cast = reduce_mean(axes = reduce_mean_69_axes_0, keep_dims = reduce_mean_69_keep_dims_0, x = reshape_92_cast)[name = tensor<string, []>("reduce_mean_69_cast")];
            tensor<fp16, [1, 32, 8, 512, 512]> sub_46_cast = sub(x = reshape_92_cast, y = reduce_mean_69_cast)[name = tensor<string, []>("sub_46_cast")];
            tensor<fp16, [1, 32, 8, 512, 512]> square_23_cast = square(x = sub_46_cast)[name = tensor<string, []>("square_23_cast")];
            tensor<int32, [3]> reduce_mean_71_axes_0 = const()[name = tensor<string, []>("reduce_mean_71_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_71_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_71_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_71_cast = reduce_mean(axes = reduce_mean_71_axes_0, keep_dims = reduce_mean_71_keep_dims_0, x = square_23_cast)[name = tensor<string, []>("reduce_mean_71_cast")];
            tensor<fp16, []> add_46_y_0_to_fp16 = const()[name = tensor<string, []>("add_46_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_46_cast = add(x = reduce_mean_71_cast, y = add_46_y_0_to_fp16)[name = tensor<string, []>("add_46_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_23_cast = sqrt(x = add_46_cast)[name = tensor<string, []>("sqrt_23_cast")];
            tensor<fp16, [1, 32, 8, 512, 512]> real_div_23_cast = real_div(x = sub_46_cast, y = sqrt_23_cast)[name = tensor<string, []>("real_div_23_cast")];
            tensor<int32, [4]> reshape_93_shape_0 = const()[name = tensor<string, []>("reshape_93_shape_0"), val = tensor<int32, [4]>([1, 256, 512, 512])];
            tensor<fp16, [1, 256, 512, 512]> reshape_93_cast = reshape(shape = reshape_93_shape_0, x = real_div_23_cast)[name = tensor<string, []>("reshape_93_cast")];
            tensor<fp16, [256]> add_47_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_47_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96848064)))];
            tensor<fp16, [256]> add_47_beta_0_to_fp16 = const()[name = tensor<string, []>("add_47_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96848640)))];
            tensor<fp16, []> add_47_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_47_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 256, 512, 512]> add_47_cast = batch_norm(beta = add_47_beta_0_to_fp16, epsilon = add_47_epsilon_0_to_fp16, gamma = add_47_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_93_cast)[name = tensor<string, []>("add_47_cast")];
            tensor<fp16, [1, 256, 512, 512]> hidden_states_93_cast = silu(x = add_47_cast)[name = tensor<string, []>("hidden_states_93_cast")];
            tensor<int32, [2]> var_530 = const()[name = tensor<string, []>("op_530"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_532 = const()[name = tensor<string, []>("op_532"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_125_pad_type_0 = const()[name = tensor<string, []>("input_125_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_125_pad_0 = const()[name = tensor<string, []>("input_125_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 256, 3, 3]> decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [128, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96849216)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439104)))];
            tensor<fp16, [1, 128, 512, 512]> input_125_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16, dilations = var_532, groups = var_26, pad = input_125_pad_0, pad_type = input_125_pad_type_0, strides = var_530, weight = decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16, x = hidden_states_93_cast)[name = tensor<string, []>("input_125_cast")];
            tensor<int32, [5]> reshape_96_shape_0 = const()[name = tensor<string, []>("reshape_96_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_96_cast = reshape(shape = reshape_96_shape_0, x = input_125_cast)[name = tensor<string, []>("reshape_96_cast")];
            tensor<int32, [3]> reduce_mean_72_axes_0 = const()[name = tensor<string, []>("reduce_mean_72_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_72_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_72_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_72_cast = reduce_mean(axes = reduce_mean_72_axes_0, keep_dims = reduce_mean_72_keep_dims_0, x = reshape_96_cast)[name = tensor<string, []>("reduce_mean_72_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_48_cast = sub(x = reshape_96_cast, y = reduce_mean_72_cast)[name = tensor<string, []>("sub_48_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_24_cast = square(x = sub_48_cast)[name = tensor<string, []>("square_24_cast")];
            tensor<int32, [3]> reduce_mean_74_axes_0 = const()[name = tensor<string, []>("reduce_mean_74_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_74_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_74_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_74_cast = reduce_mean(axes = reduce_mean_74_axes_0, keep_dims = reduce_mean_74_keep_dims_0, x = square_24_cast)[name = tensor<string, []>("reduce_mean_74_cast")];
            tensor<fp16, []> add_48_y_0_to_fp16 = const()[name = tensor<string, []>("add_48_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_48_cast = add(x = reduce_mean_74_cast, y = add_48_y_0_to_fp16)[name = tensor<string, []>("add_48_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_24_cast = sqrt(x = add_48_cast)[name = tensor<string, []>("sqrt_24_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_24_cast = real_div(x = sub_48_cast, y = sqrt_24_cast)[name = tensor<string, []>("real_div_24_cast")];
            tensor<int32, [4]> reshape_97_shape_0 = const()[name = tensor<string, []>("reshape_97_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_97_cast = reshape(shape = reshape_97_shape_0, x = real_div_24_cast)[name = tensor<string, []>("reshape_97_cast")];
            tensor<fp16, [128]> add_49_mean_0_to_fp16 = const()[name = tensor<string, []>("add_49_mean_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439424)))];
            tensor<fp16, [128]> add_49_variance_0_to_fp16 = const()[name = tensor<string, []>("add_49_variance_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439744)))];
            tensor<fp16, [128]> add_49_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_49_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440064)))];
            tensor<fp16, [128]> add_49_beta_0_to_fp16 = const()[name = tensor<string, []>("add_49_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440384)))];
            tensor<fp16, []> add_49_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_49_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_49_cast = batch_norm(beta = add_49_beta_0_to_fp16, epsilon = add_49_epsilon_0_to_fp16, gamma = add_49_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_97_cast)[name = tensor<string, []>("add_49_cast")];
            tensor<fp16, [1, 128, 512, 512]> input_129_cast = silu(x = add_49_cast)[name = tensor<string, []>("input_129_cast")];
            tensor<int32, [2]> var_542 = const()[name = tensor<string, []>("op_542"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_544 = const()[name = tensor<string, []>("op_544"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_97_pad_type_0 = const()[name = tensor<string, []>("hidden_states_97_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_97_pad_0 = const()[name = tensor<string, []>("hidden_states_97_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440704)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97735680)))];
            tensor<fp16, [1, 128, 512, 512]> hidden_states_97_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16, dilations = var_544, groups = var_26, pad = hidden_states_97_pad_0, pad_type = hidden_states_97_pad_type_0, strides = var_542, weight = decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16, x = input_129_cast)[name = tensor<string, []>("hidden_states_97_cast")];
            tensor<int32, [2]> var_549 = const()[name = tensor<string, []>("op_549"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_551 = const()[name = tensor<string, []>("op_551"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_tensor_pad_type_0 = const()[name = tensor<string, []>("input_tensor_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_tensor_pad_0 = const()[name = tensor<string, []>("input_tensor_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<fp16, [128, 256, 1, 1]> decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [128, 256, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97736000)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97801600)))];
            tensor<fp16, [1, 128, 512, 512]> input_tensor_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_551, groups = var_26, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = var_549, weight = decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16, x = input_121_cast)[name = tensor<string, []>("input_tensor_cast")];
            tensor<fp16, [1, 128, 512, 512]> var_554_cast = add(x = input_tensor_cast, y = hidden_states_97_cast)[name = tensor<string, []>("op_554_cast")];
            tensor<int32, [5]> reshape_100_shape_0 = const()[name = tensor<string, []>("reshape_100_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_100_cast = reshape(shape = reshape_100_shape_0, x = var_554_cast)[name = tensor<string, []>("reshape_100_cast")];
            tensor<int32, [3]> reduce_mean_75_axes_0 = const()[name = tensor<string, []>("reduce_mean_75_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_75_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_75_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_75_cast = reduce_mean(axes = reduce_mean_75_axes_0, keep_dims = reduce_mean_75_keep_dims_0, x = reshape_100_cast)[name = tensor<string, []>("reduce_mean_75_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_50_cast = sub(x = reshape_100_cast, y = reduce_mean_75_cast)[name = tensor<string, []>("sub_50_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_25_cast = square(x = sub_50_cast)[name = tensor<string, []>("square_25_cast")];
            tensor<int32, [3]> reduce_mean_77_axes_0 = const()[name = tensor<string, []>("reduce_mean_77_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_77_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_77_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_77_cast = reduce_mean(axes = reduce_mean_77_axes_0, keep_dims = reduce_mean_77_keep_dims_0, x = square_25_cast)[name = tensor<string, []>("reduce_mean_77_cast")];
            tensor<fp16, []> add_50_y_0_to_fp16 = const()[name = tensor<string, []>("add_50_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_50_cast = add(x = reduce_mean_77_cast, y = add_50_y_0_to_fp16)[name = tensor<string, []>("add_50_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_25_cast = sqrt(x = add_50_cast)[name = tensor<string, []>("sqrt_25_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_25_cast = real_div(x = sub_50_cast, y = sqrt_25_cast)[name = tensor<string, []>("real_div_25_cast")];
            tensor<int32, [4]> reshape_101_shape_0 = const()[name = tensor<string, []>("reshape_101_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_101_cast = reshape(shape = reshape_101_shape_0, x = real_div_25_cast)[name = tensor<string, []>("reshape_101_cast")];
            tensor<fp16, [128]> add_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_51_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97801920)))];
            tensor<fp16, [128]> add_51_beta_0_to_fp16 = const()[name = tensor<string, []>("add_51_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97802240)))];
            tensor<fp16, []> add_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_51_cast = batch_norm(beta = add_51_beta_0_to_fp16, epsilon = add_51_epsilon_0_to_fp16, gamma = add_51_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_101_cast)[name = tensor<string, []>("add_51_cast")];
            tensor<fp16, [1, 128, 512, 512]> hidden_states_99_cast = silu(x = add_51_cast)[name = tensor<string, []>("hidden_states_99_cast")];
            tensor<int32, [2]> var_567 = const()[name = tensor<string, []>("op_567"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_135_pad_type_0 = const()[name = tensor<string, []>("input_135_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_135_pad_0 = const()[name = tensor<string, []>("input_135_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97802560)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98097536)))];
            tensor<fp16, [1, 128, 512, 512]> input_135_cast = conv(bias = decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16, dilations = var_569, groups = var_26, pad = input_135_pad_0, pad_type = input_135_pad_type_0, strides = var_567, weight = decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16, x = hidden_states_99_cast)[name = tensor<string, []>("input_135_cast")];
            tensor<int32, [5]> reshape_104_shape_0 = const()[name = tensor<string, []>("reshape_104_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_104_cast = reshape(shape = reshape_104_shape_0, x = input_135_cast)[name = tensor<string, []>("reshape_104_cast")];
            tensor<int32, [3]> reduce_mean_78_axes_0 = const()[name = tensor<string, []>("reduce_mean_78_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_78_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_78_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_78_cast = reduce_mean(axes = reduce_mean_78_axes_0, keep_dims = reduce_mean_78_keep_dims_0, x = reshape_104_cast)[name = tensor<string, []>("reduce_mean_78_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_52_cast = sub(x = reshape_104_cast, y = reduce_mean_78_cast)[name = tensor<string, []>("sub_52_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_26_cast = square(x = sub_52_cast)[name = tensor<string, []>("square_26_cast")];
            tensor<int32, [3]> reduce_mean_80_axes_0 = const()[name = tensor<string, []>("reduce_mean_80_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_80_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_80_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_80_cast = reduce_mean(axes = reduce_mean_80_axes_0, keep_dims = reduce_mean_80_keep_dims_0, x = square_26_cast)[name = tensor<string, []>("reduce_mean_80_cast")];
            tensor<fp16, []> add_52_y_0_to_fp16 = const()[name = tensor<string, []>("add_52_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_52_cast = add(x = reduce_mean_80_cast, y = add_52_y_0_to_fp16)[name = tensor<string, []>("add_52_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_26_cast = sqrt(x = add_52_cast)[name = tensor<string, []>("sqrt_26_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_26_cast = real_div(x = sub_52_cast, y = sqrt_26_cast)[name = tensor<string, []>("real_div_26_cast")];
            tensor<int32, [4]> reshape_105_shape_0 = const()[name = tensor<string, []>("reshape_105_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_105_cast = reshape(shape = reshape_105_shape_0, x = real_div_26_cast)[name = tensor<string, []>("reshape_105_cast")];
            tensor<fp16, [128]> add_53_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_53_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98097856)))];
            tensor<fp16, [128]> add_53_beta_0_to_fp16 = const()[name = tensor<string, []>("add_53_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98098176)))];
            tensor<fp16, []> add_53_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_53_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_53_cast = batch_norm(beta = add_53_beta_0_to_fp16, epsilon = add_53_epsilon_0_to_fp16, gamma = add_53_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_105_cast)[name = tensor<string, []>("add_53_cast")];
            tensor<fp16, [1, 128, 512, 512]> input_139_cast = silu(x = add_53_cast)[name = tensor<string, []>("input_139_cast")];
            tensor<int32, [2]> var_579 = const()[name = tensor<string, []>("op_579"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_581 = const()[name = tensor<string, []>("op_581"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_103_pad_type_0 = const()[name = tensor<string, []>("hidden_states_103_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_103_pad_0 = const()[name = tensor<string, []>("hidden_states_103_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98098496)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98393472)))];
            tensor<fp16, [1, 128, 512, 512]> hidden_states_103_cast = conv(bias = decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16, dilations = var_581, groups = var_26, pad = hidden_states_103_pad_0, pad_type = hidden_states_103_pad_type_0, strides = var_579, weight = decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16, x = input_139_cast)[name = tensor<string, []>("hidden_states_103_cast")];
            tensor<fp16, [1, 128, 512, 512]> var_584_cast = add(x = var_554_cast, y = hidden_states_103_cast)[name = tensor<string, []>("op_584_cast")];
            tensor<int32, [5]> reshape_108_shape_0 = const()[name = tensor<string, []>("reshape_108_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_108_cast = reshape(shape = reshape_108_shape_0, x = var_584_cast)[name = tensor<string, []>("reshape_108_cast")];
            tensor<int32, [3]> reduce_mean_81_axes_0 = const()[name = tensor<string, []>("reduce_mean_81_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_81_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_81_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_81_cast = reduce_mean(axes = reduce_mean_81_axes_0, keep_dims = reduce_mean_81_keep_dims_0, x = reshape_108_cast)[name = tensor<string, []>("reduce_mean_81_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_54_cast = sub(x = reshape_108_cast, y = reduce_mean_81_cast)[name = tensor<string, []>("sub_54_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_27_cast = square(x = sub_54_cast)[name = tensor<string, []>("square_27_cast")];
            tensor<int32, [3]> reduce_mean_83_axes_0 = const()[name = tensor<string, []>("reduce_mean_83_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_83_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_83_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_83_cast = reduce_mean(axes = reduce_mean_83_axes_0, keep_dims = reduce_mean_83_keep_dims_0, x = square_27_cast)[name = tensor<string, []>("reduce_mean_83_cast")];
            tensor<fp16, []> add_54_y_0_to_fp16 = const()[name = tensor<string, []>("add_54_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_54_cast = add(x = reduce_mean_83_cast, y = add_54_y_0_to_fp16)[name = tensor<string, []>("add_54_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_27_cast = sqrt(x = add_54_cast)[name = tensor<string, []>("sqrt_27_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_27_cast = real_div(x = sub_54_cast, y = sqrt_27_cast)[name = tensor<string, []>("real_div_27_cast")];
            tensor<int32, [4]> reshape_109_shape_0 = const()[name = tensor<string, []>("reshape_109_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_109_cast = reshape(shape = reshape_109_shape_0, x = real_div_27_cast)[name = tensor<string, []>("reshape_109_cast")];
            tensor<fp16, [128]> add_55_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_55_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98393792)))];
            tensor<fp16, [128]> add_55_beta_0_to_fp16 = const()[name = tensor<string, []>("add_55_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98394112)))];
            tensor<fp16, []> add_55_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_55_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_55_cast = batch_norm(beta = add_55_beta_0_to_fp16, epsilon = add_55_epsilon_0_to_fp16, gamma = add_55_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_109_cast)[name = tensor<string, []>("add_55_cast")];
            tensor<fp16, [1, 128, 512, 512]> hidden_states_105_cast = silu(x = add_55_cast)[name = tensor<string, []>("hidden_states_105_cast")];
            tensor<int32, [2]> var_597 = const()[name = tensor<string, []>("op_597"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_599 = const()[name = tensor<string, []>("op_599"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> input_145_pad_type_0 = const()[name = tensor<string, []>("input_145_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> input_145_pad_0 = const()[name = tensor<string, []>("input_145_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98394432)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98689408)))];
            tensor<fp16, [1, 128, 512, 512]> input_145_cast = conv(bias = decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16, dilations = var_599, groups = var_26, pad = input_145_pad_0, pad_type = input_145_pad_type_0, strides = var_597, weight = decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16, x = hidden_states_105_cast)[name = tensor<string, []>("input_145_cast")];
            tensor<int32, [5]> reshape_112_shape_0 = const()[name = tensor<string, []>("reshape_112_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_112_cast = reshape(shape = reshape_112_shape_0, x = input_145_cast)[name = tensor<string, []>("reshape_112_cast")];
            tensor<int32, [3]> reduce_mean_84_axes_0 = const()[name = tensor<string, []>("reduce_mean_84_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_84_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_84_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_84_cast = reduce_mean(axes = reduce_mean_84_axes_0, keep_dims = reduce_mean_84_keep_dims_0, x = reshape_112_cast)[name = tensor<string, []>("reduce_mean_84_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_56_cast = sub(x = reshape_112_cast, y = reduce_mean_84_cast)[name = tensor<string, []>("sub_56_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_28_cast = square(x = sub_56_cast)[name = tensor<string, []>("square_28_cast")];
            tensor<int32, [3]> reduce_mean_86_axes_0 = const()[name = tensor<string, []>("reduce_mean_86_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_86_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_86_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_86_cast = reduce_mean(axes = reduce_mean_86_axes_0, keep_dims = reduce_mean_86_keep_dims_0, x = square_28_cast)[name = tensor<string, []>("reduce_mean_86_cast")];
            tensor<fp16, []> add_56_y_0_to_fp16 = const()[name = tensor<string, []>("add_56_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_56_cast = add(x = reduce_mean_86_cast, y = add_56_y_0_to_fp16)[name = tensor<string, []>("add_56_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_28_cast = sqrt(x = add_56_cast)[name = tensor<string, []>("sqrt_28_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_28_cast = real_div(x = sub_56_cast, y = sqrt_28_cast)[name = tensor<string, []>("real_div_28_cast")];
            tensor<int32, [4]> reshape_113_shape_0 = const()[name = tensor<string, []>("reshape_113_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_113_cast = reshape(shape = reshape_113_shape_0, x = real_div_28_cast)[name = tensor<string, []>("reshape_113_cast")];
            tensor<fp16, [128]> add_57_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_57_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98689728)))];
            tensor<fp16, [128]> add_57_beta_0_to_fp16 = const()[name = tensor<string, []>("add_57_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98690048)))];
            tensor<fp16, []> add_57_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_57_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_57_cast = batch_norm(beta = add_57_beta_0_to_fp16, epsilon = add_57_epsilon_0_to_fp16, gamma = add_57_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_113_cast)[name = tensor<string, []>("add_57_cast")];
            tensor<fp16, [1, 128, 512, 512]> input_149_cast = silu(x = add_57_cast)[name = tensor<string, []>("input_149_cast")];
            tensor<int32, [2]> var_609 = const()[name = tensor<string, []>("op_609"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_611 = const()[name = tensor<string, []>("op_611"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98690368)))];
            tensor<fp16, [128]> decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985344)))];
            tensor<fp16, [1, 128, 512, 512]> hidden_states_cast = conv(bias = decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16, dilations = var_611, groups = var_26, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_609, weight = decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16, x = input_149_cast)[name = tensor<string, []>("hidden_states_cast")];
            tensor<fp16, [1, 128, 512, 512]> var_614_cast = add(x = var_584_cast, y = hidden_states_cast)[name = tensor<string, []>("op_614_cast")];
            tensor<int32, [5]> reshape_116_shape_0 = const()[name = tensor<string, []>("reshape_116_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])];
            tensor<fp16, [1, 32, 4, 512, 512]> reshape_116_cast = reshape(shape = reshape_116_shape_0, x = var_614_cast)[name = tensor<string, []>("reshape_116_cast")];
            tensor<int32, [3]> reduce_mean_87_axes_0 = const()[name = tensor<string, []>("reduce_mean_87_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_87_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_87_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_87_cast = reduce_mean(axes = reduce_mean_87_axes_0, keep_dims = reduce_mean_87_keep_dims_0, x = reshape_116_cast)[name = tensor<string, []>("reduce_mean_87_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> sub_58_cast = sub(x = reshape_116_cast, y = reduce_mean_87_cast)[name = tensor<string, []>("sub_58_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> square_29_cast = square(x = sub_58_cast)[name = tensor<string, []>("square_29_cast")];
            tensor<int32, [3]> reduce_mean_89_axes_0 = const()[name = tensor<string, []>("reduce_mean_89_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
            tensor<bool, []> reduce_mean_89_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_89_keep_dims_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_89_cast = reduce_mean(axes = reduce_mean_89_axes_0, keep_dims = reduce_mean_89_keep_dims_0, x = square_29_cast)[name = tensor<string, []>("reduce_mean_89_cast")];
            tensor<fp16, []> add_58_y_0_to_fp16 = const()[name = tensor<string, []>("add_58_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
            tensor<fp16, [1, 32, 1, 1, 1]> add_58_cast = add(x = reduce_mean_89_cast, y = add_58_y_0_to_fp16)[name = tensor<string, []>("add_58_cast")];
            tensor<fp16, [1, 32, 1, 1, 1]> sqrt_29_cast = sqrt(x = add_58_cast)[name = tensor<string, []>("sqrt_29_cast")];
            tensor<fp16, [1, 32, 4, 512, 512]> real_div_29_cast = real_div(x = sub_58_cast, y = sqrt_29_cast)[name = tensor<string, []>("real_div_29_cast")];
            tensor<int32, [4]> reshape_117_shape_0 = const()[name = tensor<string, []>("reshape_117_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])];
            tensor<fp16, [1, 128, 512, 512]> reshape_117_cast = reshape(shape = reshape_117_shape_0, x = real_div_29_cast)[name = tensor<string, []>("reshape_117_cast")];
            tensor<fp16, [128]> add_59_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_59_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985664)))];
            tensor<fp16, [128]> add_59_beta_0_to_fp16 = const()[name = tensor<string, []>("add_59_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985984)))];
            tensor<fp16, []> add_59_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_59_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 128, 512, 512]> add_59_cast = batch_norm(beta = add_59_beta_0_to_fp16, epsilon = add_59_epsilon_0_to_fp16, gamma = add_59_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_117_cast)[name = tensor<string, []>("add_59_cast")];
            tensor<fp16, [1, 128, 512, 512]> input_cast = silu(x = add_59_cast)[name = tensor<string, []>("input_cast")];
            tensor<int32, [2]> var_623 = const()[name = tensor<string, []>("op_623"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [2]> var_625 = const()[name = tensor<string, []>("op_625"), val = tensor<int32, [2]>([1, 1])];
            tensor<string, []> var_627_pad_type_0 = const()[name = tensor<string, []>("op_627_pad_type_0"), val = tensor<string, []>("custom")];
            tensor<int32, [4]> var_627_pad_0 = const()[name = tensor<string, []>("op_627_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
            tensor<fp16, [3, 128, 3, 3]> decoder_conv_out_weight_to_fp16 = const()[name = tensor<string, []>("decoder_conv_out_weight_to_fp16"), val = tensor<fp16, [3, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98986304)))];
            tensor<fp16, [3]> decoder_conv_out_bias_to_fp16 = const()[name = tensor<string, []>("decoder_conv_out_bias_to_fp16"), val = tensor<fp16, [3]>([0x1.06p-6, -0x1.4ap-6, -0x1.78p-5])];
            tensor<fp16, [1, 3, 512, 512]> var_627_cast = conv(bias = decoder_conv_out_bias_to_fp16, dilations = var_625, groups = var_26, pad = var_627_pad_0, pad_type = var_627_pad_type_0, strides = var_623, weight = decoder_conv_out_weight_to_fp16, x = input_cast)[name = tensor<string, []>("op_627_cast")];
            tensor<string, []> var_627_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_627_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
            tensor<fp32, [1, 3, 512, 512]> image = cast(dtype = var_627_cast_to_fp32_dtype_0, x = var_627_cast)[name = tensor<string, []>("cast_37")];
        } -> (image);
}