sridhar-cd
commited on
Custom inference code for SageMaker deployment (#9)
Browse files- Custom inference code for aws (a211030719303b038c551e8378aeb0c21ea4c79f)
- code/inference.py +24 -0
- code/requirements.txt +0 -0
code/inference.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
2 |
+
|
3 |
+
|
4 |
+
def model_fn(model_dir):
|
5 |
+
"""
|
6 |
+
Load the model and tokenizer from the specified paths
|
7 |
+
:param model_dir:
|
8 |
+
:return:
|
9 |
+
"""
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
12 |
+
return model, tokenizer
|
13 |
+
|
14 |
+
|
15 |
+
def predict_fn(data, model_and_tokenizer):
|
16 |
+
# destruct model and tokenizer
|
17 |
+
model, tokenizer = model_and_tokenizer
|
18 |
+
|
19 |
+
bert_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer,
|
20 |
+
truncation=True, max_length=512, return_all_scores=True)
|
21 |
+
# Tokenize the input, pick up first 512 tokens before passing it further
|
22 |
+
tokens = tokenizer.encode(data['inputs'], add_special_tokens=False, max_length=512, truncation=True)
|
23 |
+
input_data = tokenizer.decode(tokens)
|
24 |
+
return bert_pipe(input_data)
|
code/requirements.txt
ADDED
File without changes
|