stefan-it commited on
Commit
7a65b67
·
1 Parent(s): be2534b

readme: add initial version

Browse files
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Historic Language Models (HLMs)
2
+
3
+ Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
4
+
5
+ | Language | Training data | Size
6
+ | -------- | ------------- | ----
7
+ | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
8
+ | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
9
+ | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
10
+ | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
11
+ | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
12
+
13
+ # Corpora Stats
14
+
15
+ ## German Europeana Corpus
16
+
17
+ We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
18
+ and use less-noisier data:
19
+
20
+ | OCR confidence | Size
21
+ | -------------- | ----
22
+ | **0.60** | 28GB
23
+ | 0.65 | 18GB
24
+ | 0.70 | 13GB
25
+
26
+ For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
27
+
28
+ ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png)
29
+
30
+ ## French Europeana Corpus
31
+
32
+ Like German, we use different ocr confidence thresholds:
33
+
34
+ | OCR confidence | Size
35
+ | -------------- | ----
36
+ | 0.60 | 31GB
37
+ | 0.65 | 27GB
38
+ | **0.70** | 27GB
39
+ | 0.75 | 23GB
40
+ | 0.80 | 11GB
41
+
42
+ For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
43
+
44
+ ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png)
45
+
46
+ ## British Library Corpus
47
+
48
+ Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
49
+
50
+ | Years | Size
51
+ | ----------------- | ----
52
+ | ALL | 24GB
53
+ | >= 1800 && < 1900 | 24GB
54
+
55
+ We use the year filtered variant. The following plot shows a tokens per year distribution:
56
+
57
+ ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png)
58
+
59
+ ## Finnish Europeana Corpus
60
+
61
+ | OCR confidence | Size
62
+ | -------------- | ----
63
+ | 0.60 | 1.2GB
64
+
65
+ The following plot shows a tokens per year distribution:
66
+
67
+ ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png)
68
+
69
+ ## Swedish Europeana Corpus
70
+
71
+ | OCR confidence | Size
72
+ | -------------- | ----
73
+ | 0.60 | 1.1GB
74
+
75
+ The following plot shows a tokens per year distribution:
76
+
77
+ ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png)
78
+
79
+ ## All Corpora
80
+
81
+ The following plot shows a tokens per year distribution of the complete training corpus:
82
+
83
+ ![All Corpora Stats](stats/figures/all_corpus_stats.png)
84
+
85
+ # Multilingual Vocab generation
86
+
87
+ For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
88
+ The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
89
+
90
+ | Language | Size
91
+ | -------- | ----
92
+ | German | 10GB
93
+ | French | 10GB
94
+ | English | 10GB
95
+ | Finnish | 9.5GB
96
+ | Swedish | 9.7GB
97
+
98
+ We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
99
+
100
+ | Language | NER corpora
101
+ | -------- | ------------------
102
+ | German | CLEF-HIPE, NewsEye
103
+ | French | CLEF-HIPE, NewsEye
104
+ | English | CLEF-HIPE
105
+ | Finnish | NewsEye
106
+ | Swedish | NewsEye
107
+
108
+ Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
109
+
110
+ | Language | Subword fertility | Unknown portion
111
+ | -------- | ------------------ | ---------------
112
+ | German | 1.43 | 0.0004
113
+ | French | 1.25 | 0.0001
114
+ | English | 1.25 | 0.0
115
+ | Finnish | 1.69 | 0.0007
116
+ | Swedish | 1.43 | 0.0
117
+
118
+ Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
119
+
120
+ | Language | Subword fertility | Unknown portion
121
+ | -------- | ------------------ | ---------------
122
+ | German | 1.31 | 0.0004
123
+ | French | 1.16 | 0.0001
124
+ | English | 1.17 | 0.0
125
+ | Finnish | 1.54 | 0.0007
126
+ | Swedish | 1.32 | 0.0
127
+
128
+ # Final pretraining corpora
129
+
130
+ We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
131
+
132
+ | Language | Size
133
+ | -------- | ----
134
+ | German | 28GB
135
+ | French | 27GB
136
+ | English | 24GB
137
+ | Finnish | 27GB
138
+ | Swedish | 27GB
139
+
140
+ Total size is 130GB.
141
+
142
+ # Pretraining
143
+
144
+ We train a multilingual BERT model using the 32k vocab with the official BERT implementation
145
+ on a v3-32 TPU using the following parameters:
146
+
147
+ ```bash
148
+ python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
149
+ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \
150
+ --bert_config_file ./config.json \
151
+ --max_seq_length=512 \
152
+ --max_predictions_per_seq=75 \
153
+ --do_train=True \
154
+ --train_batch_size=128 \
155
+ --num_train_steps=3000000 \
156
+ --learning_rate=1e-4 \
157
+ --save_checkpoints_steps=100000 \
158
+ --keep_checkpoint_max=20 \
159
+ --use_tpu=True \
160
+ --tpu_name=electra-2 \
161
+ --num_tpu_cores=32
162
+ ```
163
+
164
+ The following plot shows the pretraining loss curve:
165
+
166
+ ![Training loss curve](stats/figures/pretraining_loss.png)
167
+
168
+ # Acknowledgments
169
+
170
+ Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
171
+ TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
172
+
173
+ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
174
+ it is possible to download both cased and uncased models from their S3 storage 🤗
stats/Corpus_Stats.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
stats/bl_stats.pickle ADDED
Binary file (3.93 kB). View file
 
stats/figures/all_corpus_stats.png ADDED
stats/figures/bl_corpus_stats.png ADDED
stats/figures/finnish_europeana_corpus_stats.png ADDED
stats/figures/french_europeana_corpus_stats.png ADDED
stats/figures/german_europeana_corpus_stats.png ADDED
stats/figures/pretraining_loss.png ADDED
stats/figures/swedish_europeana_corpus_stats.png ADDED
stats/finnish_europeana_stats.pickle ADDED
Binary file (199 Bytes). View file
 
stats/french_europeana_stats.pickle ADDED
Binary file (1.64 kB). View file
 
stats/german_europeana_stats.pickle ADDED
Binary file (1.99 kB). View file
 
stats/swedish_europeana_stats.pickle ADDED
Binary file (199 Bytes). View file