dddsaty commited on
Commit
99429e0
·
verified ·
1 Parent(s): e004477

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +128 -1
README.md CHANGED
@@ -21,4 +21,131 @@ tags:
21
 
22
  ### Method
23
  - DPO
24
- - Adapter Merge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ### Method
23
  - DPO
24
+ - Adapter Merge
25
+
26
+ --- Below is original Author's explanation
27
+ ---
28
+ language:
29
+ - ko
30
+ - en
31
+ pipeline_tag: text-generation
32
+ inference: false
33
+ tags:
34
+ - solar
35
+ - mistral
36
+ - pytorch
37
+ - solar-ko
38
+ library_name: transformers
39
+ license: apache-2.0
40
+ ---
41
+
42
+ **Update Log**
43
+
44
+ - 2024.01.08: Initial Test version Release of Solar-Ko
45
+
46
+ # **Open-Solar-Ko** ⭐🇰🇷
47
+
48
+ Solar-Ko represents an advanced iteration of the upstage/SOLAR-10.7B-v1.0 model, featuring an expanded vocabulary and the inclusion of a Korean corpus for enhanced pretraining.
49
+
50
+ Open-Solar-Ko exclusively utilizes publicly accessible Korean corpora, including sources such as [AI Hub](https://www.aihub.or.kr), [Modu Corpus, 모두의 말뭉치](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).
51
+
52
+ As training was conducted solely with publicly available corpora, this model is open for unrestricted use by everyone, adhering to the Apache2.0 open source License.
53
+
54
+ ## Model Details
55
+
56
+ **Model Developers:** Junbum Lee (Beomi)
57
+
58
+ **Variations:** Solar-Ko is available with one parameter sizes — 10B with Continual Pretrained version.
59
+
60
+ **Input:** The model accepts only text input.
61
+
62
+ **Output:** The model produces text output exclusively.
63
+
64
+ **Model Architecture:**
65
+
66
+ SOLAR-KO-10.7B is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
67
+
68
+ | |Training Data|Parameters|Content Length|GQA|Tokens|Learning Rate|
69
+ |---|---|---|---|---|---|---|
70
+ |SOLAR-KO-10.7B|*A curated mix of Publicly Accessible Korean Corpora*|10.7B|2k|✘|>15B*|5e<sup>-5</sup>|
71
+
72
+ **Training Corpus**
73
+
74
+ The model was trained using selected datasets from AIHub and Modu Corpus. Detailed information about the training datasets is available below:
75
+
76
+ - AI Hub: [corpus/AI_HUB](./corpus/AI_HUB)
77
+ - Only the `Training` segment of the data was used.
78
+ - The `Validation` and `Test` segments were deliberately excluded.
79
+ - Modu Corpus: [corpus/MODU_CORPUS](./corpus/MODU_CORPUS)
80
+
81
+ The final JSONL dataset used to train this model is approximately 61GB in size.
82
+
83
+ Total token count: Approximately 15 billion tokens (*using the expanded tokenizer. With the original SOLAR tokenizer, >60 billion tokens.)
84
+
85
+ **Vocab Expansion**
86
+
87
+ | Model Name | Vocabulary Size | Description |
88
+ | --- | --- | --- |
89
+ | Original Solar | 32000 | Sentencepiece BPE |
90
+ | **Expanded SOLAR-KO-10.7B** | 46592 | Sentencepiece BPE. Added Korean vocab and merges |
91
+
92
+ **Tokenizing "안녕하세요, 오늘은 날씨가 좋네요."**
93
+
94
+ - SOLAR-10.7B: 26 tokens
95
+ - SOLAR-KO-10.7b: 8 tokens
96
+
97
+ | Model | Tokens |
98
+ | --- | --- |
99
+ | SOLAR-10.7B | `['▁', '안', '<0xEB>', '<0x85>', '<0x95>', '하', '세', '요', ',', '▁', '오', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '날', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '좋', '네', '요', '.']` |
100
+ | SOLAR-KO-10.7B | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.']` |
101
+
102
+ **Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"**
103
+
104
+ - SOLAR-10.7B: 22 tokens
105
+ - SOLAR-KO-10.7b: 22 tokens
106
+
107
+ | Model | Tokens |
108
+ | --- | --- |
109
+ | SOLAR-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
110
+ | SOLAR-KO-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
111
+
112
+ # LICENSE
113
+
114
+ Apache 2.0
115
+
116
+ # **Model Benchmark**
117
+
118
+ ## LM Eval Harness - Korean (polyglot branch)
119
+
120
+ - Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
121
+
122
+ | | 0 | 5 | 10 | 50 |
123
+ |:---------------------------------|---------:|---------:|---------:|---------:|
124
+ | kobest_boolq (macro_f1) | 0.853949 | 0.88098 | 0.898139 | 0.902354 |
125
+ | kobest_copa (macro_f1) | 0.804531 | 0.826736 | 0.837656 | 0.860899 |
126
+ | kobest_hellaswag (macro_f1) | 0.507174 | 0.500983 | 0.487287 | 0.512182 |
127
+ | kobest_sentineg (macro_f1) | 0.3517 | 0.972291 | 0.977321 | 0.984884 |
128
+ | kohatespeech (macro_f1) | 0.258111 | 0.403957 | 0.386808 | 0.462393 |
129
+ | kohatespeech_apeach (macro_f1) | 0.337667 | 0.651697 | 0.705337 | 0.827757 |
130
+ | kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.503464 | 0.498501 | 0.443218 |
131
+ | korunsmile (f1) | 0.3814 | 0.356939 | 0.369989 | 0.296193 |
132
+ | nsmc (acc) | 0.5356 | 0.87162 | 0.88654 | 0.89632 |
133
+ | pawsx_ko (acc) | 0.5435 | 0.5245 | 0.5315 | 0.5385 |
134
+
135
+ ## Citation
136
+
137
+ ```
138
+ @misc {solar_ko_junbum_2023,
139
+ author = { {L. Junbum} },
140
+ title = { Solar-Ko-10.7b },
141
+ year = 2024,
142
+ url = { https://huggingface.co/beomi/SOLAR-KO-10.7B },
143
+ publisher = { Hugging Face }
144
+ }
145
+
146
+ ```
147
+
148
+ ## Acknowledgements
149
+
150
+ - Training support was provided by the [TPU Research Cloud](https://sites.research.google/trc/) program.
151
+ - The training corpus includes data from [AI Hub](https://www.aihub.or.kr/), [Modu Corpus](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).