File size: 14,273 Bytes
e0522c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
Tokenizer class for ReplitLM 
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model.
"""
import os
import sentencepiece as spm
from sentencepiece import SentencePieceProcessor
from shutil import copyfile
from transformers import PreTrainedTokenizer
from typing import Any, Dict, List, Optional, Tuple
import base64

VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

class Tokenizer:
    def __init__(self, model_path="/weka-jd/prod/deepseek/permanent/shared/mingchuan/llama_data/tokenizer.model"):
        # reload tokenizer
        assert os.path.isfile(model_path), model_path
        self.sp_model = SentencePieceProcessor(model_file=model_path)

        # # ? print spm for debugging
        # spm_proto = sp_pb2_model.ModelProto()
        # spm_proto.ParseFromString(self.sp_model.serialized_model_proto())
        # print(dir(spm_proto))
        # attrs = ['denormalizer_spec', 'normalizer_spec', 'trainer_spec']
        # print('=======' * 5)
        # for attr in attrs:
        #     print('=======', attr, '=======')
        #     print(getattr(spm_proto, attr))
        
        # BOS / EOS token IDs
        self.n_words: int = self.sp_model.vocab_size()
        self.bos_id: int = self.sp_model.bos_id()
        self.eos_id: int = self.sp_model.eos_id()
        self.pad_id: int = self.sp_model.pad_id()
        assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()

    def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
        assert type(s) is str
        t = self.sp_model.encode(s)
        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]
        return t

    def decode(self, t: List[int]) -> str:
        return self.sp_model.decode(t)

class LineBBPETokenizer(Tokenizer):
    def __init__(self, 
                 model_path="/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/spm_0717_final/100000/bbpe_full_bytes.model", 
                 ignore_decode_err=False, attachfile_path=None):
        super().__init__(model_path=model_path)
        self.ignore_decode_err = ignore_decode_err
        Bvocab_path = attachfile_path + "/byteVocab.txt"
        #'/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/byteVocab.txt'
        punct_path = attachfile_path + "/all_punct.txt"
        #punct_path = '/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/all_punct.txt'
        Bvocab = open(Bvocab_path, 'r', encoding = 'utf-8')
        self.punct = []
        with open(punct_path, 'r', encoding='utf-8') as f:
            lines = f.readlines()
            for line in lines:
                line = line.strip()
                if line:
                    self.punct.append(line)
        
        self.numchars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        self.white_space = [' ']
        self.special_chars = set(self.numchars) | set(self.punct) | set(self.white_space)
        
        # ! remove chars that will be encoded to 0 (unk_id)
        unk_ch = set()
        for ch in self.special_chars:
            ids = self.sp_model.encode(ch)
            if 0 in ids:
                unk_ch.update(ch)
        self.special_chars = self.special_chars - unk_ch
        
        self.byte2ch = [-1] * 256
        self.ch2byte = {}
        for line in list(Bvocab.readlines())[:256]:
            tokens = line.strip().split('\t')
            self.byte2ch[int(tokens[0])] = tokens[1]
            self.ch2byte[tokens[1]] = int(tokens[0])
        self.b16_dec = {}
        self.b16_enc = ['x'] * 16
        for i in range(10):
            self.b16_dec[str(i)] = i 
            self.b16_enc[i] = str(i) 
        self.b16_dec['A'] = 10
        self.b16_dec['B'] = 11
        self.b16_dec['C'] = 12
        self.b16_dec['D'] = 13
        self.b16_dec['E'] = 14
        self.b16_dec['F'] = 15
        self.b16_enc[10] = 'A'
        self.b16_enc[11] = 'B'
        self.b16_enc[12] = 'C'
        self.b16_enc[13] = 'D'
        self.b16_enc[14] = 'E'
        self.b16_enc[15] = 'F'
        
        self.new_line_id = self.sp_model.encode(self.mapping_raw_to_256ch('\n'))[-1]
    
    def base16encode(self, n):
        return self.b16_enc[n // 16] + self.b16_enc[n % 16]
    
    def base16decode(self, s):
        return self.b16_dec[s[0]] * 16 + self.b16_dec[s[1]]

    def mapping_raw_to_256ch(self, s: str) -> str:
        mapped_s = []
        for token in s:
            if token in self.special_chars:
                mapped_s.append(token)
                continue
            tk = str(base64.b16encode(token.encode("utf-8")))[2:-1]
            num = len(tk) // 2
            for i in range(num):
                mapped_s.append(self.byte2ch[(self.base16decode(tk[2*i:2*i+2]))])
        return ''.join(mapped_s)
    
    def mapping_256ch_to_raw(self, s: str) -> str:
        mapped_s = ''
        for token in s:
            if token in self.ch2byte:
                mapped_s += self.base16encode(self.ch2byte[token])
            else:
                mapped_s += str(base64.b16encode(token.encode("utf-8")))[2:-1]
        # decode utf-8 string to text string
        byte_s = bytes.fromhex(mapped_s)
        if self.ignore_decode_err:
            try:
                mapped_s = byte_s.decode('utf-8')
            except UnicodeDecodeError:
                mapped_s = ''
        else:
            mapped_s = byte_s.decode('utf-8')
        return mapped_s
    
    def encode_line(self, s):
        if s == '\n':
            return [self.new_line_id]
        ss = self.mapping_raw_to_256ch(s)
        t = self.sp_model.encode(ss)
        return t

    def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
        assert type(s) is str
        t = []
        lines = s.split('\n')
        n_lines = len(lines)
        for i in range(n_lines):
            if i != n_lines - 1:
                line = lines[i] + '\n'
            else:
                line = lines[i]
            tt = self.encode_line(line)
            t += tt
        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]
        return t

    def get_restored_white_space(self, t):
        t = t[:3]
        if t[0] == self.bos_id:
            t = t[1:]
        decoded = self.sp_model.decode(t)
        encoded = self.sp_model.encode(decoded)
        if len(encoded) < len(t):
            return ' '
        else:
            return ''
    
    def decode_line(self, t):
        if len(t) == 1 and t[0] == self.new_line_id:
            return '\n'
        # ? special bug fixing for a single whitespace in the line beginning, sentencepiece will consume it, we restore it
        restored_white_space = self.get_restored_white_space(t)
        ss = self.sp_model.decode(t)
        s = restored_white_space + self.mapping_256ch_to_raw(ss)
        return s

    def decode(self, t: List[int]) -> str:
        s = ''
        new_line_indices = [index for index, value in enumerate(t) if value == self.new_line_id]
        last_idx = 0
        for i in range(len(new_line_indices)):
            line_id = t[last_idx:new_line_indices[i] + 1]
            ss = self.decode_line(line_id)
            s += ss
            last_idx = new_line_indices[i] + 1
        if last_idx < len(t):
            line_id = t[last_idx:]
            ss = self.decode_line(line_id)
            s += ss
        return s
    
    def add_special(self, special_tokens):
        '''
        add special tokens to the tokenizer
        '''
        spm_proto = sp_pb2_model.ModelProto()
        spm_proto.ParseFromString(self.sp_model.serialized_model_proto())
        for special_token in special_tokens:
            new_p = sp_pb2_model.ModelProto().SentencePiece()
            new_p.piece = self.mapping_raw_to_256ch(special_token)
            new_p.score = 0.0
            new_p.type = 4
            spm_proto.pieces.append(new_p)
            print(f'special token added: {special_token}')
        self.sp_model.LoadFromSerializedProto(spm_proto.SerializeToString())

class DeepSeekTokenizer(PreTrainedTokenizer):
    """
      Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
      This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
      Args:
          vocab_file (`str`):
              [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
              contains the vocabulary necessary to instantiate a tokenizer.
          eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
              The end of sequence token.
          bos_token (`str`, *optional*, defaults to `None`):
              The begin of sequence token.
          unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
              The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
              token instead.
          pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
              The token used for padding, for example when batching sequences of different lengths.
          sp_model_kwargs (`dict`, *optional*):
              Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
              SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
              to set:
              - `enable_sampling`: Enable subword regularization.
              - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
                - `nbest_size = {0,1}`: No sampling is performed.
                - `nbest_size > 1`: samples from the nbest_size results.
                - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
                  using forward-filtering-and-backward-sampling algorithm.
              - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
                BPE-dropout.
      """
    vocab_files_names = VOCAB_FILES_NAMES
    prefix_tokens: List[int] = []
    model_input_names = ['input_ids', 'attention_mask']

    def __init__(self, vocab_file, bos_token="<s>", eos_token='</s>', unk_token=None, pad_token=None, sep_token='</s>', sp_model_kwargs: Optional[Dict[str, Any]]=None, name_or_path=None, **kwargs) -> None:
        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
        super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
        #obtain the current directory of py
        vocab_path = name_or_path
        print("vocab_path: ", vocab_path)
        self.vocab_path = vocab_path
        self.vocab_file = vocab_path + '/tokenizer.model'
        self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=vocab_path, ignore_decode_err=True)

    @property
    def vocab_size(self):
        return self.token.sp_model.get_piece_size()

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def __getstate__(self):
        state = self.__dict__.copy()
        state['token'] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        if not hasattr(self, 'sp_model_kwargs'):
            self.sp_model_kwargs = {}
        self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=self.vocab_path)

    def _tokenize(self, text: str) -> List[str]:
        """Take as input a string and return a list of strings (tokens) for words/sub-words"""
        token_ids = self.token.encode(text, bos=True, eos=False)
        string_tokens = [self._convert_id_to_token(token_id) for token_id in token_ids]
        return string_tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.token.sp_model.piece_to_id(token)

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        token = self.token.sp_model.id_to_piece(index)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        ids = [self._convert_token_to_id(token) for token in tokens]
        return self.token.decode(ids)

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
        out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, 'wb') as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)
        return (out_vocab_file,)