File size: 1,802 Bytes
8e3753a c8d781b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: apache-2.0
---
## Deprem Niyet Sınıflandırma (Dataset v1.3, BERT 128k)
Alakasız sınıfı atılarak eğitildi.
## Eval Results
```
precision recall f1-score support
Lojistik 0.83 0.86 0.84 22
Elektrik Kaynagi 0.71 0.95 0.81 39
Arama Ekipmani 0.72 0.80 0.76 82
Cenaze 0.50 0.33 0.40 3
Giysi 0.79 0.96 0.87 91
Enkaz Kaldirma 0.99 0.95 0.97 601
Isinma 0.75 0.90 0.82 112
Barınma 0.98 0.95 0.96 292
Tuvalet 0.83 1.00 0.91 5
Su 0.80 0.85 0.83 39
Yemek 0.94 0.95 0.94 138
Saglik 0.80 0.85 0.83 75
micro avg 0.90 0.93 0.92 1499
macro avg 0.80 0.86 0.83 1499
weighted avg 0.91 0.93 0.92 1499
samples avg 0.94 0.95 0.94 1499
```
Reproducibility icin trainer arg'lari:
```python
TrainingArguments(
fp16=True,
evaluation_strategy = "steps",
save_strategy = "steps",
learning_rate=5.1058553791201954e-05,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size*2,
num_train_epochs=4,
load_best_model_at_end=True,
metric_for_best_model="macro f1",
logging_steps = step_size,
seed = 42,
data_seed = 42,
dataloader_num_workers = 0,
lr_scheduler_type ="linear",
warmup_steps=0,
weight_decay=0.06437697487126866,
full_determinism = True,
group_by_length = True
)
```
Threshold:
Best Threshold: 0.52
|