File size: 2,081 Bytes
ec20260 7e98e07 ec20260 7012c4b 7e98e07 ec20260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: transformers
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: dharunsk62/layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dharunsk62/layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7220
- Validation Loss: 0.7021
- Train Overall Precision: 0.6606
- Train Overall Recall: 0.7285
- Train Overall F1: 0.6929
- Train Overall Accuracy: 0.7748
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.5060 | 1.2508 | 0.4032 | 0.4777 | 0.4373 | 0.6024 | 0 |
| 1.0108 | 0.8129 | 0.6004 | 0.6929 | 0.6434 | 0.7439 | 1 |
| 0.7220 | 0.7021 | 0.6606 | 0.7285 | 0.6929 | 0.7748 | 2 |
### Framework versions
- Transformers 4.46.3
- TensorFlow 2.17.1
- Datasets 3.2.0
- Tokenizers 0.20.3
|