File size: 1,795 Bytes
ed668e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ast-finetuned-speech-commands-bit3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-speech-commands-bit3
This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4409
- Accuracy: 0.9031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 36
- eval_batch_size: 36
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.0583 | 1.0 | 589 | 0.8992 | 0.4810 |
| 0.0628 | 2.0 | 1178 | 0.9031 | 0.4409 |
| 0.0218 | 3.0 | 1767 | 0.9010 | 0.4444 |
| 0.0092 | 4.0 | 2356 | 0.9012 | 0.4322 |
| 0.0148 | 5.0 | 2945 | 0.9031 | 0.3927 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|