dheerajpai
commited on
dheerajpai/patentbert-cased-2b
Browse files- README.md +255 -1
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -14,6 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
# patentbert-cased-2b
|
15 |
|
16 |
This model is a fine-tuned version of [dheerajpai/patentbert](https://huggingface.co/dheerajpai/patentbert) on the None dataset.
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
@@ -39,10 +41,262 @@ The following hyperparameters were used during training:
|
|
39 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
- lr_scheduler_type: linear
|
41 |
- lr_scheduler_warmup_ratio: 0.1
|
42 |
-
- num_epochs:
|
43 |
|
44 |
### Training results
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
### Framework versions
|
|
|
14 |
# patentbert-cased-2b
|
15 |
|
16 |
This model is a fine-tuned version of [dheerajpai/patentbert](https://huggingface.co/dheerajpai/patentbert) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.6765
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
- lr_scheduler_warmup_ratio: 0.1
|
44 |
+
- num_epochs: 1
|
45 |
|
46 |
### Training results
|
47 |
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
50 |
+
| No log | 0.0 | 500 | 9.7138 |
|
51 |
+
| No log | 0.01 | 1000 | 8.8994 |
|
52 |
+
| No log | 0.01 | 1500 | 8.0568 |
|
53 |
+
| No log | 0.02 | 2000 | 7.1249 |
|
54 |
+
| No log | 0.02 | 2500 | 6.7644 |
|
55 |
+
| No log | 0.02 | 3000 | 6.6609 |
|
56 |
+
| No log | 0.03 | 3500 | 6.4539 |
|
57 |
+
| No log | 0.03 | 4000 | 6.4159 |
|
58 |
+
| No log | 0.04 | 4500 | 6.2912 |
|
59 |
+
| 7.4382 | 0.04 | 5000 | 6.2655 |
|
60 |
+
| 7.4382 | 0.04 | 5500 | 6.1653 |
|
61 |
+
| 7.4382 | 0.05 | 6000 | 6.0521 |
|
62 |
+
| 7.4382 | 0.05 | 6500 | 6.0127 |
|
63 |
+
| 7.4382 | 0.06 | 7000 | 5.9010 |
|
64 |
+
| 7.4382 | 0.06 | 7500 | 5.6470 |
|
65 |
+
| 7.4382 | 0.06 | 8000 | 5.9284 |
|
66 |
+
| 7.4382 | 0.07 | 8500 | 5.8607 |
|
67 |
+
| 7.4382 | 0.07 | 9000 | 5.6770 |
|
68 |
+
| 7.4382 | 0.08 | 9500 | 5.6702 |
|
69 |
+
| 5.909 | 0.08 | 10000 | 5.7809 |
|
70 |
+
| 5.909 | 0.08 | 10500 | 5.6887 |
|
71 |
+
| 5.909 | 0.09 | 11000 | 5.5835 |
|
72 |
+
| 5.909 | 0.09 | 11500 | 5.4876 |
|
73 |
+
| 5.909 | 0.1 | 12000 | 5.3873 |
|
74 |
+
| 5.909 | 0.1 | 12500 | 5.3155 |
|
75 |
+
| 5.909 | 0.1 | 13000 | 5.4199 |
|
76 |
+
| 5.909 | 0.11 | 13500 | 5.4683 |
|
77 |
+
| 5.909 | 0.11 | 14000 | 5.5431 |
|
78 |
+
| 5.909 | 0.12 | 14500 | 5.2682 |
|
79 |
+
| 5.452 | 0.12 | 15000 | 5.3033 |
|
80 |
+
| 5.452 | 0.12 | 15500 | 5.1011 |
|
81 |
+
| 5.452 | 0.13 | 16000 | 5.0596 |
|
82 |
+
| 5.452 | 0.13 | 16500 | 5.2932 |
|
83 |
+
| 5.452 | 0.14 | 17000 | 5.1327 |
|
84 |
+
| 5.452 | 0.14 | 17500 | 5.1718 |
|
85 |
+
| 5.452 | 0.14 | 18000 | 5.0993 |
|
86 |
+
| 5.452 | 0.15 | 18500 | 5.0052 |
|
87 |
+
| 5.452 | 0.15 | 19000 | 5.1058 |
|
88 |
+
| 5.452 | 0.16 | 19500 | 5.1275 |
|
89 |
+
| 5.1622 | 0.16 | 20000 | 4.9027 |
|
90 |
+
| 5.1622 | 0.16 | 20500 | 4.9368 |
|
91 |
+
| 5.1622 | 0.17 | 21000 | 5.0207 |
|
92 |
+
| 5.1622 | 0.17 | 21500 | 5.0132 |
|
93 |
+
| 5.1622 | 0.18 | 22000 | 4.8983 |
|
94 |
+
| 5.1622 | 0.18 | 22500 | 5.0904 |
|
95 |
+
| 5.1622 | 0.18 | 23000 | 4.9643 |
|
96 |
+
| 5.1622 | 0.19 | 23500 | 4.8202 |
|
97 |
+
| 5.1622 | 0.19 | 24000 | 4.9618 |
|
98 |
+
| 5.1622 | 0.2 | 24500 | 4.8981 |
|
99 |
+
| 4.9639 | 0.2 | 25000 | 4.9170 |
|
100 |
+
| 4.9639 | 0.2 | 25500 | 4.8487 |
|
101 |
+
| 4.9639 | 0.21 | 26000 | 4.9493 |
|
102 |
+
| 4.9639 | 0.21 | 26500 | 4.7741 |
|
103 |
+
| 4.9639 | 0.22 | 27000 | 4.6247 |
|
104 |
+
| 4.9639 | 0.22 | 27500 | 4.8149 |
|
105 |
+
| 4.9639 | 0.22 | 28000 | 4.7340 |
|
106 |
+
| 4.9639 | 0.23 | 28500 | 4.6638 |
|
107 |
+
| 4.9639 | 0.23 | 29000 | 4.4906 |
|
108 |
+
| 4.9639 | 0.24 | 29500 | 4.4666 |
|
109 |
+
| 4.7493 | 0.24 | 30000 | 4.3591 |
|
110 |
+
| 4.7493 | 0.24 | 30500 | 4.3064 |
|
111 |
+
| 4.7493 | 0.25 | 31000 | 4.1517 |
|
112 |
+
| 4.7493 | 0.25 | 31500 | 4.2189 |
|
113 |
+
| 4.7493 | 0.26 | 32000 | 3.9452 |
|
114 |
+
| 4.7493 | 0.26 | 32500 | 4.2082 |
|
115 |
+
| 4.7493 | 0.26 | 33000 | 4.1326 |
|
116 |
+
| 4.7493 | 0.27 | 33500 | 3.9694 |
|
117 |
+
| 4.7493 | 0.27 | 34000 | 4.0213 |
|
118 |
+
| 4.7493 | 0.28 | 34500 | 3.7256 |
|
119 |
+
| 4.2572 | 0.28 | 35000 | 3.9048 |
|
120 |
+
| 4.2572 | 0.28 | 35500 | 3.7937 |
|
121 |
+
| 4.2572 | 0.29 | 36000 | 3.5790 |
|
122 |
+
| 4.2572 | 0.29 | 36500 | 3.7600 |
|
123 |
+
| 4.2572 | 0.29 | 37000 | 3.5873 |
|
124 |
+
| 4.2572 | 0.3 | 37500 | 3.4409 |
|
125 |
+
| 4.2572 | 0.3 | 38000 | 3.4437 |
|
126 |
+
| 4.2572 | 0.31 | 38500 | 3.2380 |
|
127 |
+
| 4.2572 | 0.31 | 39000 | 3.1350 |
|
128 |
+
| 4.2572 | 0.31 | 39500 | 3.2821 |
|
129 |
+
| 3.7 | 0.32 | 40000 | 3.1141 |
|
130 |
+
| 3.7 | 0.32 | 40500 | 2.8792 |
|
131 |
+
| 3.7 | 0.33 | 41000 | 2.9130 |
|
132 |
+
| 3.7 | 0.33 | 41500 | 2.7695 |
|
133 |
+
| 3.7 | 0.33 | 42000 | 2.7399 |
|
134 |
+
| 3.7 | 0.34 | 42500 | 3.0070 |
|
135 |
+
| 3.7 | 0.34 | 43000 | 2.7522 |
|
136 |
+
| 3.7 | 0.35 | 43500 | 2.7255 |
|
137 |
+
| 3.7 | 0.35 | 44000 | 2.3562 |
|
138 |
+
| 3.7 | 0.35 | 44500 | 2.7340 |
|
139 |
+
| 3.0512 | 0.36 | 45000 | 2.5456 |
|
140 |
+
| 3.0512 | 0.36 | 45500 | 2.6832 |
|
141 |
+
| 3.0512 | 0.37 | 46000 | 2.5833 |
|
142 |
+
| 3.0512 | 0.37 | 46500 | 2.5323 |
|
143 |
+
| 3.0512 | 0.37 | 47000 | 2.4608 |
|
144 |
+
| 3.0512 | 0.38 | 47500 | 2.5094 |
|
145 |
+
| 3.0512 | 0.38 | 48000 | 2.2950 |
|
146 |
+
| 3.0512 | 0.39 | 48500 | 2.3787 |
|
147 |
+
| 3.0512 | 0.39 | 49000 | 2.3364 |
|
148 |
+
| 3.0512 | 0.39 | 49500 | 2.2081 |
|
149 |
+
| 2.7005 | 0.4 | 50000 | 2.4490 |
|
150 |
+
| 2.7005 | 0.4 | 50500 | 2.5215 |
|
151 |
+
| 2.7005 | 0.41 | 51000 | 2.2109 |
|
152 |
+
| 2.7005 | 0.41 | 51500 | 2.0476 |
|
153 |
+
| 2.7005 | 0.41 | 52000 | 2.5112 |
|
154 |
+
| 2.7005 | 0.42 | 52500 | 2.3243 |
|
155 |
+
| 2.7005 | 0.42 | 53000 | 2.1928 |
|
156 |
+
| 2.7005 | 0.43 | 53500 | 2.2190 |
|
157 |
+
| 2.7005 | 0.43 | 54000 | 2.2165 |
|
158 |
+
| 2.7005 | 0.43 | 54500 | 2.1837 |
|
159 |
+
| 2.4756 | 0.44 | 55000 | 2.1097 |
|
160 |
+
| 2.4756 | 0.44 | 55500 | 2.1694 |
|
161 |
+
| 2.4756 | 0.45 | 56000 | 2.0265 |
|
162 |
+
| 2.4756 | 0.45 | 56500 | 2.0210 |
|
163 |
+
| 2.4756 | 0.45 | 57000 | 1.9137 |
|
164 |
+
| 2.4756 | 0.46 | 57500 | 2.0189 |
|
165 |
+
| 2.4756 | 0.46 | 58000 | 2.1363 |
|
166 |
+
| 2.4756 | 0.47 | 58500 | 2.0439 |
|
167 |
+
| 2.4756 | 0.47 | 59000 | 2.1116 |
|
168 |
+
| 2.4756 | 0.47 | 59500 | 2.0844 |
|
169 |
+
| 2.3096 | 0.48 | 60000 | 2.0552 |
|
170 |
+
| 2.3096 | 0.48 | 60500 | 1.9667 |
|
171 |
+
| 2.3096 | 0.49 | 61000 | 1.8774 |
|
172 |
+
| 2.3096 | 0.49 | 61500 | 2.0857 |
|
173 |
+
| 2.3096 | 0.49 | 62000 | 2.2166 |
|
174 |
+
| 2.3096 | 0.5 | 62500 | 1.9270 |
|
175 |
+
| 2.3096 | 0.5 | 63000 | 1.9487 |
|
176 |
+
| 2.3096 | 0.51 | 63500 | 1.9888 |
|
177 |
+
| 2.3096 | 0.51 | 64000 | 2.0290 |
|
178 |
+
| 2.3096 | 0.51 | 64500 | 2.0329 |
|
179 |
+
| 2.2043 | 0.52 | 65000 | 2.1624 |
|
180 |
+
| 2.2043 | 0.52 | 65500 | 1.7746 |
|
181 |
+
| 2.2043 | 0.53 | 66000 | 2.2028 |
|
182 |
+
| 2.2043 | 0.53 | 66500 | 2.0827 |
|
183 |
+
| 2.2043 | 0.53 | 67000 | 1.9982 |
|
184 |
+
| 2.2043 | 0.54 | 67500 | 2.0323 |
|
185 |
+
| 2.2043 | 0.54 | 68000 | 2.0935 |
|
186 |
+
| 2.2043 | 0.55 | 68500 | 1.8756 |
|
187 |
+
| 2.2043 | 0.55 | 69000 | 2.0685 |
|
188 |
+
| 2.2043 | 0.55 | 69500 | 1.7008 |
|
189 |
+
| 2.1246 | 0.56 | 70000 | 1.8077 |
|
190 |
+
| 2.1246 | 0.56 | 70500 | 1.6410 |
|
191 |
+
| 2.1246 | 0.57 | 71000 | 2.1809 |
|
192 |
+
| 2.1246 | 0.57 | 71500 | 1.9749 |
|
193 |
+
| 2.1246 | 0.57 | 72000 | 2.0454 |
|
194 |
+
| 2.1246 | 0.58 | 72500 | 1.8338 |
|
195 |
+
| 2.1246 | 0.58 | 73000 | 2.0519 |
|
196 |
+
| 2.1246 | 0.59 | 73500 | 1.8969 |
|
197 |
+
| 2.1246 | 0.59 | 74000 | 1.9628 |
|
198 |
+
| 2.1246 | 0.59 | 74500 | 1.8511 |
|
199 |
+
| 2.0501 | 0.6 | 75000 | 1.7241 |
|
200 |
+
| 2.0501 | 0.6 | 75500 | 1.9739 |
|
201 |
+
| 2.0501 | 0.61 | 76000 | 1.7898 |
|
202 |
+
| 2.0501 | 0.61 | 76500 | 1.8359 |
|
203 |
+
| 2.0501 | 0.61 | 77000 | 1.6916 |
|
204 |
+
| 2.0501 | 0.62 | 77500 | 1.8907 |
|
205 |
+
| 2.0501 | 0.62 | 78000 | 1.8675 |
|
206 |
+
| 2.0501 | 0.63 | 78500 | 1.6473 |
|
207 |
+
| 2.0501 | 0.63 | 79000 | 2.0039 |
|
208 |
+
| 2.0501 | 0.63 | 79500 | 1.7961 |
|
209 |
+
| 2.0036 | 0.64 | 80000 | 1.9772 |
|
210 |
+
| 2.0036 | 0.64 | 80500 | 1.9374 |
|
211 |
+
| 2.0036 | 0.65 | 81000 | 1.9039 |
|
212 |
+
| 2.0036 | 0.65 | 81500 | 1.7710 |
|
213 |
+
| 2.0036 | 0.65 | 82000 | 1.7382 |
|
214 |
+
| 2.0036 | 0.66 | 82500 | 1.9952 |
|
215 |
+
| 2.0036 | 0.66 | 83000 | 1.6185 |
|
216 |
+
| 2.0036 | 0.67 | 83500 | 1.8987 |
|
217 |
+
| 2.0036 | 0.67 | 84000 | 1.7178 |
|
218 |
+
| 2.0036 | 0.67 | 84500 | 1.8065 |
|
219 |
+
| 1.9663 | 0.68 | 85000 | 1.6718 |
|
220 |
+
| 1.9663 | 0.68 | 85500 | 1.7911 |
|
221 |
+
| 1.9663 | 0.69 | 86000 | 1.8223 |
|
222 |
+
| 1.9663 | 0.69 | 86500 | 1.7343 |
|
223 |
+
| 1.9663 | 0.69 | 87000 | 1.8141 |
|
224 |
+
| 1.9663 | 0.7 | 87500 | 1.6959 |
|
225 |
+
| 1.9663 | 0.7 | 88000 | 1.7000 |
|
226 |
+
| 1.9663 | 0.71 | 88500 | 1.8956 |
|
227 |
+
| 1.9663 | 0.71 | 89000 | 1.7486 |
|
228 |
+
| 1.9663 | 0.71 | 89500 | 1.7521 |
|
229 |
+
| 1.9217 | 0.72 | 90000 | 1.7994 |
|
230 |
+
| 1.9217 | 0.72 | 90500 | 1.6972 |
|
231 |
+
| 1.9217 | 0.73 | 91000 | 1.7402 |
|
232 |
+
| 1.9217 | 0.73 | 91500 | 2.0969 |
|
233 |
+
| 1.9217 | 0.73 | 92000 | 1.9346 |
|
234 |
+
| 1.9217 | 0.74 | 92500 | 1.7400 |
|
235 |
+
| 1.9217 | 0.74 | 93000 | 1.6087 |
|
236 |
+
| 1.9217 | 0.75 | 93500 | 1.9118 |
|
237 |
+
| 1.9217 | 0.75 | 94000 | 1.5671 |
|
238 |
+
| 1.9217 | 0.75 | 94500 | 1.8391 |
|
239 |
+
| 1.8971 | 0.76 | 95000 | 1.5498 |
|
240 |
+
| 1.8971 | 0.76 | 95500 | 1.8260 |
|
241 |
+
| 1.8971 | 0.77 | 96000 | 1.9168 |
|
242 |
+
| 1.8971 | 0.77 | 96500 | 1.6989 |
|
243 |
+
| 1.8971 | 0.77 | 97000 | 1.6661 |
|
244 |
+
| 1.8971 | 0.78 | 97500 | 1.6856 |
|
245 |
+
| 1.8971 | 0.78 | 98000 | 1.7222 |
|
246 |
+
| 1.8971 | 0.79 | 98500 | 1.6734 |
|
247 |
+
| 1.8971 | 0.79 | 99000 | 1.7253 |
|
248 |
+
| 1.8971 | 0.79 | 99500 | 1.5505 |
|
249 |
+
| 1.8712 | 0.8 | 100000 | 1.6383 |
|
250 |
+
| 1.8712 | 0.8 | 100500 | 1.8282 |
|
251 |
+
| 1.8712 | 0.81 | 101000 | 1.6067 |
|
252 |
+
| 1.8712 | 0.81 | 101500 | 1.7311 |
|
253 |
+
| 1.8712 | 0.81 | 102000 | 1.6562 |
|
254 |
+
| 1.8712 | 0.82 | 102500 | 1.5626 |
|
255 |
+
| 1.8712 | 0.82 | 103000 | 1.7117 |
|
256 |
+
| 1.8712 | 0.83 | 103500 | 1.6085 |
|
257 |
+
| 1.8712 | 0.83 | 104000 | 1.6914 |
|
258 |
+
| 1.8712 | 0.83 | 104500 | 1.7433 |
|
259 |
+
| 1.8537 | 0.84 | 105000 | 1.5394 |
|
260 |
+
| 1.8537 | 0.84 | 105500 | 1.6920 |
|
261 |
+
| 1.8537 | 0.85 | 106000 | 1.8206 |
|
262 |
+
| 1.8537 | 0.85 | 106500 | 1.7831 |
|
263 |
+
| 1.8537 | 0.85 | 107000 | 1.7058 |
|
264 |
+
| 1.8537 | 0.86 | 107500 | 1.6986 |
|
265 |
+
| 1.8537 | 0.86 | 108000 | 1.5653 |
|
266 |
+
| 1.8537 | 0.86 | 108500 | 1.8101 |
|
267 |
+
| 1.8537 | 0.87 | 109000 | 1.6472 |
|
268 |
+
| 1.8537 | 0.87 | 109500 | 1.7624 |
|
269 |
+
| 1.8317 | 0.88 | 110000 | 1.7655 |
|
270 |
+
| 1.8317 | 0.88 | 110500 | 1.6391 |
|
271 |
+
| 1.8317 | 0.88 | 111000 | 1.6167 |
|
272 |
+
| 1.8317 | 0.89 | 111500 | 1.6827 |
|
273 |
+
| 1.8317 | 0.89 | 112000 | 1.6433 |
|
274 |
+
| 1.8317 | 0.9 | 112500 | 1.7570 |
|
275 |
+
| 1.8317 | 0.9 | 113000 | 1.6109 |
|
276 |
+
| 1.8317 | 0.9 | 113500 | 1.5238 |
|
277 |
+
| 1.8317 | 0.91 | 114000 | 1.6575 |
|
278 |
+
| 1.8317 | 0.91 | 114500 | 1.6388 |
|
279 |
+
| 1.8231 | 0.92 | 115000 | 1.7069 |
|
280 |
+
| 1.8231 | 0.92 | 115500 | 1.5599 |
|
281 |
+
| 1.8231 | 0.92 | 116000 | 1.5553 |
|
282 |
+
| 1.8231 | 0.93 | 116500 | 1.7457 |
|
283 |
+
| 1.8231 | 0.93 | 117000 | 1.5716 |
|
284 |
+
| 1.8231 | 0.94 | 117500 | 1.7186 |
|
285 |
+
| 1.8231 | 0.94 | 118000 | 1.6921 |
|
286 |
+
| 1.8231 | 0.94 | 118500 | 1.5303 |
|
287 |
+
| 1.8231 | 0.95 | 119000 | 1.6168 |
|
288 |
+
| 1.8231 | 0.95 | 119500 | 1.6569 |
|
289 |
+
| 1.8113 | 0.96 | 120000 | 1.7487 |
|
290 |
+
| 1.8113 | 0.96 | 120500 | 1.7703 |
|
291 |
+
| 1.8113 | 0.96 | 121000 | 1.5803 |
|
292 |
+
| 1.8113 | 0.97 | 121500 | 1.7256 |
|
293 |
+
| 1.8113 | 0.97 | 122000 | 1.5522 |
|
294 |
+
| 1.8113 | 0.98 | 122500 | 1.8039 |
|
295 |
+
| 1.8113 | 0.98 | 123000 | 1.6774 |
|
296 |
+
| 1.8113 | 0.98 | 123500 | 1.8046 |
|
297 |
+
| 1.8113 | 0.99 | 124000 | 1.6236 |
|
298 |
+
| 1.8113 | 0.99 | 124500 | 1.7422 |
|
299 |
+
| 1.8063 | 1.0 | 125000 | 1.6765 |
|
300 |
|
301 |
|
302 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 81147512
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:487ecd55060a1de95a8ff2723a190c23fb35de5a47a2c3dc7e20bb07eefdbf54
|
3 |
size 81147512
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a4b34a68e777a579f85a4788fd03ff7f44901451edabe01c289d6d620bdecb
|
3 |
size 4920
|