dheerajpai commited on
Commit
0ed138f
·
verified ·
1 Parent(s): cc03565

dheerajpai/patentbert-cased-2b

Browse files
Files changed (3) hide show
  1. README.md +255 -1
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -14,6 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
14
  # patentbert-cased-2b
15
 
16
  This model is a fine-tuned version of [dheerajpai/patentbert](https://huggingface.co/dheerajpai/patentbert) on the None dataset.
 
 
17
 
18
  ## Model description
19
 
@@ -39,10 +41,262 @@ The following hyperparameters were used during training:
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
  - lr_scheduler_warmup_ratio: 0.1
42
- - num_epochs: 5
43
 
44
  ### Training results
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  ### Framework versions
 
14
  # patentbert-cased-2b
15
 
16
  This model is a fine-tuned version of [dheerajpai/patentbert](https://huggingface.co/dheerajpai/patentbert) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.6765
19
 
20
  ## Model description
21
 
 
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
  - lr_scheduler_warmup_ratio: 0.1
44
+ - num_epochs: 1
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:------:|:---------------:|
50
+ | No log | 0.0 | 500 | 9.7138 |
51
+ | No log | 0.01 | 1000 | 8.8994 |
52
+ | No log | 0.01 | 1500 | 8.0568 |
53
+ | No log | 0.02 | 2000 | 7.1249 |
54
+ | No log | 0.02 | 2500 | 6.7644 |
55
+ | No log | 0.02 | 3000 | 6.6609 |
56
+ | No log | 0.03 | 3500 | 6.4539 |
57
+ | No log | 0.03 | 4000 | 6.4159 |
58
+ | No log | 0.04 | 4500 | 6.2912 |
59
+ | 7.4382 | 0.04 | 5000 | 6.2655 |
60
+ | 7.4382 | 0.04 | 5500 | 6.1653 |
61
+ | 7.4382 | 0.05 | 6000 | 6.0521 |
62
+ | 7.4382 | 0.05 | 6500 | 6.0127 |
63
+ | 7.4382 | 0.06 | 7000 | 5.9010 |
64
+ | 7.4382 | 0.06 | 7500 | 5.6470 |
65
+ | 7.4382 | 0.06 | 8000 | 5.9284 |
66
+ | 7.4382 | 0.07 | 8500 | 5.8607 |
67
+ | 7.4382 | 0.07 | 9000 | 5.6770 |
68
+ | 7.4382 | 0.08 | 9500 | 5.6702 |
69
+ | 5.909 | 0.08 | 10000 | 5.7809 |
70
+ | 5.909 | 0.08 | 10500 | 5.6887 |
71
+ | 5.909 | 0.09 | 11000 | 5.5835 |
72
+ | 5.909 | 0.09 | 11500 | 5.4876 |
73
+ | 5.909 | 0.1 | 12000 | 5.3873 |
74
+ | 5.909 | 0.1 | 12500 | 5.3155 |
75
+ | 5.909 | 0.1 | 13000 | 5.4199 |
76
+ | 5.909 | 0.11 | 13500 | 5.4683 |
77
+ | 5.909 | 0.11 | 14000 | 5.5431 |
78
+ | 5.909 | 0.12 | 14500 | 5.2682 |
79
+ | 5.452 | 0.12 | 15000 | 5.3033 |
80
+ | 5.452 | 0.12 | 15500 | 5.1011 |
81
+ | 5.452 | 0.13 | 16000 | 5.0596 |
82
+ | 5.452 | 0.13 | 16500 | 5.2932 |
83
+ | 5.452 | 0.14 | 17000 | 5.1327 |
84
+ | 5.452 | 0.14 | 17500 | 5.1718 |
85
+ | 5.452 | 0.14 | 18000 | 5.0993 |
86
+ | 5.452 | 0.15 | 18500 | 5.0052 |
87
+ | 5.452 | 0.15 | 19000 | 5.1058 |
88
+ | 5.452 | 0.16 | 19500 | 5.1275 |
89
+ | 5.1622 | 0.16 | 20000 | 4.9027 |
90
+ | 5.1622 | 0.16 | 20500 | 4.9368 |
91
+ | 5.1622 | 0.17 | 21000 | 5.0207 |
92
+ | 5.1622 | 0.17 | 21500 | 5.0132 |
93
+ | 5.1622 | 0.18 | 22000 | 4.8983 |
94
+ | 5.1622 | 0.18 | 22500 | 5.0904 |
95
+ | 5.1622 | 0.18 | 23000 | 4.9643 |
96
+ | 5.1622 | 0.19 | 23500 | 4.8202 |
97
+ | 5.1622 | 0.19 | 24000 | 4.9618 |
98
+ | 5.1622 | 0.2 | 24500 | 4.8981 |
99
+ | 4.9639 | 0.2 | 25000 | 4.9170 |
100
+ | 4.9639 | 0.2 | 25500 | 4.8487 |
101
+ | 4.9639 | 0.21 | 26000 | 4.9493 |
102
+ | 4.9639 | 0.21 | 26500 | 4.7741 |
103
+ | 4.9639 | 0.22 | 27000 | 4.6247 |
104
+ | 4.9639 | 0.22 | 27500 | 4.8149 |
105
+ | 4.9639 | 0.22 | 28000 | 4.7340 |
106
+ | 4.9639 | 0.23 | 28500 | 4.6638 |
107
+ | 4.9639 | 0.23 | 29000 | 4.4906 |
108
+ | 4.9639 | 0.24 | 29500 | 4.4666 |
109
+ | 4.7493 | 0.24 | 30000 | 4.3591 |
110
+ | 4.7493 | 0.24 | 30500 | 4.3064 |
111
+ | 4.7493 | 0.25 | 31000 | 4.1517 |
112
+ | 4.7493 | 0.25 | 31500 | 4.2189 |
113
+ | 4.7493 | 0.26 | 32000 | 3.9452 |
114
+ | 4.7493 | 0.26 | 32500 | 4.2082 |
115
+ | 4.7493 | 0.26 | 33000 | 4.1326 |
116
+ | 4.7493 | 0.27 | 33500 | 3.9694 |
117
+ | 4.7493 | 0.27 | 34000 | 4.0213 |
118
+ | 4.7493 | 0.28 | 34500 | 3.7256 |
119
+ | 4.2572 | 0.28 | 35000 | 3.9048 |
120
+ | 4.2572 | 0.28 | 35500 | 3.7937 |
121
+ | 4.2572 | 0.29 | 36000 | 3.5790 |
122
+ | 4.2572 | 0.29 | 36500 | 3.7600 |
123
+ | 4.2572 | 0.29 | 37000 | 3.5873 |
124
+ | 4.2572 | 0.3 | 37500 | 3.4409 |
125
+ | 4.2572 | 0.3 | 38000 | 3.4437 |
126
+ | 4.2572 | 0.31 | 38500 | 3.2380 |
127
+ | 4.2572 | 0.31 | 39000 | 3.1350 |
128
+ | 4.2572 | 0.31 | 39500 | 3.2821 |
129
+ | 3.7 | 0.32 | 40000 | 3.1141 |
130
+ | 3.7 | 0.32 | 40500 | 2.8792 |
131
+ | 3.7 | 0.33 | 41000 | 2.9130 |
132
+ | 3.7 | 0.33 | 41500 | 2.7695 |
133
+ | 3.7 | 0.33 | 42000 | 2.7399 |
134
+ | 3.7 | 0.34 | 42500 | 3.0070 |
135
+ | 3.7 | 0.34 | 43000 | 2.7522 |
136
+ | 3.7 | 0.35 | 43500 | 2.7255 |
137
+ | 3.7 | 0.35 | 44000 | 2.3562 |
138
+ | 3.7 | 0.35 | 44500 | 2.7340 |
139
+ | 3.0512 | 0.36 | 45000 | 2.5456 |
140
+ | 3.0512 | 0.36 | 45500 | 2.6832 |
141
+ | 3.0512 | 0.37 | 46000 | 2.5833 |
142
+ | 3.0512 | 0.37 | 46500 | 2.5323 |
143
+ | 3.0512 | 0.37 | 47000 | 2.4608 |
144
+ | 3.0512 | 0.38 | 47500 | 2.5094 |
145
+ | 3.0512 | 0.38 | 48000 | 2.2950 |
146
+ | 3.0512 | 0.39 | 48500 | 2.3787 |
147
+ | 3.0512 | 0.39 | 49000 | 2.3364 |
148
+ | 3.0512 | 0.39 | 49500 | 2.2081 |
149
+ | 2.7005 | 0.4 | 50000 | 2.4490 |
150
+ | 2.7005 | 0.4 | 50500 | 2.5215 |
151
+ | 2.7005 | 0.41 | 51000 | 2.2109 |
152
+ | 2.7005 | 0.41 | 51500 | 2.0476 |
153
+ | 2.7005 | 0.41 | 52000 | 2.5112 |
154
+ | 2.7005 | 0.42 | 52500 | 2.3243 |
155
+ | 2.7005 | 0.42 | 53000 | 2.1928 |
156
+ | 2.7005 | 0.43 | 53500 | 2.2190 |
157
+ | 2.7005 | 0.43 | 54000 | 2.2165 |
158
+ | 2.7005 | 0.43 | 54500 | 2.1837 |
159
+ | 2.4756 | 0.44 | 55000 | 2.1097 |
160
+ | 2.4756 | 0.44 | 55500 | 2.1694 |
161
+ | 2.4756 | 0.45 | 56000 | 2.0265 |
162
+ | 2.4756 | 0.45 | 56500 | 2.0210 |
163
+ | 2.4756 | 0.45 | 57000 | 1.9137 |
164
+ | 2.4756 | 0.46 | 57500 | 2.0189 |
165
+ | 2.4756 | 0.46 | 58000 | 2.1363 |
166
+ | 2.4756 | 0.47 | 58500 | 2.0439 |
167
+ | 2.4756 | 0.47 | 59000 | 2.1116 |
168
+ | 2.4756 | 0.47 | 59500 | 2.0844 |
169
+ | 2.3096 | 0.48 | 60000 | 2.0552 |
170
+ | 2.3096 | 0.48 | 60500 | 1.9667 |
171
+ | 2.3096 | 0.49 | 61000 | 1.8774 |
172
+ | 2.3096 | 0.49 | 61500 | 2.0857 |
173
+ | 2.3096 | 0.49 | 62000 | 2.2166 |
174
+ | 2.3096 | 0.5 | 62500 | 1.9270 |
175
+ | 2.3096 | 0.5 | 63000 | 1.9487 |
176
+ | 2.3096 | 0.51 | 63500 | 1.9888 |
177
+ | 2.3096 | 0.51 | 64000 | 2.0290 |
178
+ | 2.3096 | 0.51 | 64500 | 2.0329 |
179
+ | 2.2043 | 0.52 | 65000 | 2.1624 |
180
+ | 2.2043 | 0.52 | 65500 | 1.7746 |
181
+ | 2.2043 | 0.53 | 66000 | 2.2028 |
182
+ | 2.2043 | 0.53 | 66500 | 2.0827 |
183
+ | 2.2043 | 0.53 | 67000 | 1.9982 |
184
+ | 2.2043 | 0.54 | 67500 | 2.0323 |
185
+ | 2.2043 | 0.54 | 68000 | 2.0935 |
186
+ | 2.2043 | 0.55 | 68500 | 1.8756 |
187
+ | 2.2043 | 0.55 | 69000 | 2.0685 |
188
+ | 2.2043 | 0.55 | 69500 | 1.7008 |
189
+ | 2.1246 | 0.56 | 70000 | 1.8077 |
190
+ | 2.1246 | 0.56 | 70500 | 1.6410 |
191
+ | 2.1246 | 0.57 | 71000 | 2.1809 |
192
+ | 2.1246 | 0.57 | 71500 | 1.9749 |
193
+ | 2.1246 | 0.57 | 72000 | 2.0454 |
194
+ | 2.1246 | 0.58 | 72500 | 1.8338 |
195
+ | 2.1246 | 0.58 | 73000 | 2.0519 |
196
+ | 2.1246 | 0.59 | 73500 | 1.8969 |
197
+ | 2.1246 | 0.59 | 74000 | 1.9628 |
198
+ | 2.1246 | 0.59 | 74500 | 1.8511 |
199
+ | 2.0501 | 0.6 | 75000 | 1.7241 |
200
+ | 2.0501 | 0.6 | 75500 | 1.9739 |
201
+ | 2.0501 | 0.61 | 76000 | 1.7898 |
202
+ | 2.0501 | 0.61 | 76500 | 1.8359 |
203
+ | 2.0501 | 0.61 | 77000 | 1.6916 |
204
+ | 2.0501 | 0.62 | 77500 | 1.8907 |
205
+ | 2.0501 | 0.62 | 78000 | 1.8675 |
206
+ | 2.0501 | 0.63 | 78500 | 1.6473 |
207
+ | 2.0501 | 0.63 | 79000 | 2.0039 |
208
+ | 2.0501 | 0.63 | 79500 | 1.7961 |
209
+ | 2.0036 | 0.64 | 80000 | 1.9772 |
210
+ | 2.0036 | 0.64 | 80500 | 1.9374 |
211
+ | 2.0036 | 0.65 | 81000 | 1.9039 |
212
+ | 2.0036 | 0.65 | 81500 | 1.7710 |
213
+ | 2.0036 | 0.65 | 82000 | 1.7382 |
214
+ | 2.0036 | 0.66 | 82500 | 1.9952 |
215
+ | 2.0036 | 0.66 | 83000 | 1.6185 |
216
+ | 2.0036 | 0.67 | 83500 | 1.8987 |
217
+ | 2.0036 | 0.67 | 84000 | 1.7178 |
218
+ | 2.0036 | 0.67 | 84500 | 1.8065 |
219
+ | 1.9663 | 0.68 | 85000 | 1.6718 |
220
+ | 1.9663 | 0.68 | 85500 | 1.7911 |
221
+ | 1.9663 | 0.69 | 86000 | 1.8223 |
222
+ | 1.9663 | 0.69 | 86500 | 1.7343 |
223
+ | 1.9663 | 0.69 | 87000 | 1.8141 |
224
+ | 1.9663 | 0.7 | 87500 | 1.6959 |
225
+ | 1.9663 | 0.7 | 88000 | 1.7000 |
226
+ | 1.9663 | 0.71 | 88500 | 1.8956 |
227
+ | 1.9663 | 0.71 | 89000 | 1.7486 |
228
+ | 1.9663 | 0.71 | 89500 | 1.7521 |
229
+ | 1.9217 | 0.72 | 90000 | 1.7994 |
230
+ | 1.9217 | 0.72 | 90500 | 1.6972 |
231
+ | 1.9217 | 0.73 | 91000 | 1.7402 |
232
+ | 1.9217 | 0.73 | 91500 | 2.0969 |
233
+ | 1.9217 | 0.73 | 92000 | 1.9346 |
234
+ | 1.9217 | 0.74 | 92500 | 1.7400 |
235
+ | 1.9217 | 0.74 | 93000 | 1.6087 |
236
+ | 1.9217 | 0.75 | 93500 | 1.9118 |
237
+ | 1.9217 | 0.75 | 94000 | 1.5671 |
238
+ | 1.9217 | 0.75 | 94500 | 1.8391 |
239
+ | 1.8971 | 0.76 | 95000 | 1.5498 |
240
+ | 1.8971 | 0.76 | 95500 | 1.8260 |
241
+ | 1.8971 | 0.77 | 96000 | 1.9168 |
242
+ | 1.8971 | 0.77 | 96500 | 1.6989 |
243
+ | 1.8971 | 0.77 | 97000 | 1.6661 |
244
+ | 1.8971 | 0.78 | 97500 | 1.6856 |
245
+ | 1.8971 | 0.78 | 98000 | 1.7222 |
246
+ | 1.8971 | 0.79 | 98500 | 1.6734 |
247
+ | 1.8971 | 0.79 | 99000 | 1.7253 |
248
+ | 1.8971 | 0.79 | 99500 | 1.5505 |
249
+ | 1.8712 | 0.8 | 100000 | 1.6383 |
250
+ | 1.8712 | 0.8 | 100500 | 1.8282 |
251
+ | 1.8712 | 0.81 | 101000 | 1.6067 |
252
+ | 1.8712 | 0.81 | 101500 | 1.7311 |
253
+ | 1.8712 | 0.81 | 102000 | 1.6562 |
254
+ | 1.8712 | 0.82 | 102500 | 1.5626 |
255
+ | 1.8712 | 0.82 | 103000 | 1.7117 |
256
+ | 1.8712 | 0.83 | 103500 | 1.6085 |
257
+ | 1.8712 | 0.83 | 104000 | 1.6914 |
258
+ | 1.8712 | 0.83 | 104500 | 1.7433 |
259
+ | 1.8537 | 0.84 | 105000 | 1.5394 |
260
+ | 1.8537 | 0.84 | 105500 | 1.6920 |
261
+ | 1.8537 | 0.85 | 106000 | 1.8206 |
262
+ | 1.8537 | 0.85 | 106500 | 1.7831 |
263
+ | 1.8537 | 0.85 | 107000 | 1.7058 |
264
+ | 1.8537 | 0.86 | 107500 | 1.6986 |
265
+ | 1.8537 | 0.86 | 108000 | 1.5653 |
266
+ | 1.8537 | 0.86 | 108500 | 1.8101 |
267
+ | 1.8537 | 0.87 | 109000 | 1.6472 |
268
+ | 1.8537 | 0.87 | 109500 | 1.7624 |
269
+ | 1.8317 | 0.88 | 110000 | 1.7655 |
270
+ | 1.8317 | 0.88 | 110500 | 1.6391 |
271
+ | 1.8317 | 0.88 | 111000 | 1.6167 |
272
+ | 1.8317 | 0.89 | 111500 | 1.6827 |
273
+ | 1.8317 | 0.89 | 112000 | 1.6433 |
274
+ | 1.8317 | 0.9 | 112500 | 1.7570 |
275
+ | 1.8317 | 0.9 | 113000 | 1.6109 |
276
+ | 1.8317 | 0.9 | 113500 | 1.5238 |
277
+ | 1.8317 | 0.91 | 114000 | 1.6575 |
278
+ | 1.8317 | 0.91 | 114500 | 1.6388 |
279
+ | 1.8231 | 0.92 | 115000 | 1.7069 |
280
+ | 1.8231 | 0.92 | 115500 | 1.5599 |
281
+ | 1.8231 | 0.92 | 116000 | 1.5553 |
282
+ | 1.8231 | 0.93 | 116500 | 1.7457 |
283
+ | 1.8231 | 0.93 | 117000 | 1.5716 |
284
+ | 1.8231 | 0.94 | 117500 | 1.7186 |
285
+ | 1.8231 | 0.94 | 118000 | 1.6921 |
286
+ | 1.8231 | 0.94 | 118500 | 1.5303 |
287
+ | 1.8231 | 0.95 | 119000 | 1.6168 |
288
+ | 1.8231 | 0.95 | 119500 | 1.6569 |
289
+ | 1.8113 | 0.96 | 120000 | 1.7487 |
290
+ | 1.8113 | 0.96 | 120500 | 1.7703 |
291
+ | 1.8113 | 0.96 | 121000 | 1.5803 |
292
+ | 1.8113 | 0.97 | 121500 | 1.7256 |
293
+ | 1.8113 | 0.97 | 122000 | 1.5522 |
294
+ | 1.8113 | 0.98 | 122500 | 1.8039 |
295
+ | 1.8113 | 0.98 | 123000 | 1.6774 |
296
+ | 1.8113 | 0.98 | 123500 | 1.8046 |
297
+ | 1.8113 | 0.99 | 124000 | 1.6236 |
298
+ | 1.8113 | 0.99 | 124500 | 1.7422 |
299
+ | 1.8063 | 1.0 | 125000 | 1.6765 |
300
 
301
 
302
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc9b3c432f7f1d5486c2bea7e393514940fa92bb26235eeaefceb53c9de319ad
3
  size 81147512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487ecd55060a1de95a8ff2723a190c23fb35de5a47a2c3dc7e20bb07eefdbf54
3
  size 81147512
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc66d1dfd68cdce5ec30fc6128176dc01fe4e78e6acbd7cf9fc423f4cc0d864a
3
  size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a4b34a68e777a579f85a4788fd03ff7f44901451edabe01c289d6d620bdecb
3
  size 4920