mrovera commited on
Commit
97887fa
·
1 Parent(s): 6c220f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -6,4 +6,60 @@ tags:
6
  - legal
7
  widget:
8
  - text: "Modifica dell' area marina protetta denominata Cinque Terre"
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - legal
7
  widget:
8
  - text: "Modifica dell' area marina protetta denominata Cinque Terre"
9
+ ---
10
+ # Gulbert-ft-ita
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+ This model can be used for multi-label classification of Italian legislative acts, according to the subject index (taxonomy) currently adopted in the Gazzetta Uffciale. The model has been obtained by fine-tuning a [BERT-XXL Italian](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) model on a large corpus of legislative acts published in the Gazzetta Ufficiale from 1988 until early 2022.
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ <!-- Provide a longer summary of what this model is. -->
21
+
22
+ - **Language(s) (NLP):** Italian
23
+ - **License:** apache-2.0
24
+ - **Finetuned from model:** https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
25
+
26
+ ### Model Sources
27
+
28
+ <!-- Provide the basic links for the model. -->
29
+
30
+ - **Repository:** https://huggingface.co/dhfbk
31
+ - **Paper:** M. Rovera, A. Palmero Aprosio, F. Greco, M. Lucchese, S. Tonelli and A. Antetomaso (2023) **Italian Legislative Text Classification for Gazzetta Ufficiale**. In *Proceedings of the Fifth Natural Legal Language Workshop* (NLLP2023).
32
+ - **Demo:** https://dh-server.fbk.eu/ipzs-ui-demo/
33
+
34
+ ## Uses
35
+
36
+
37
+ ### Direct Use
38
+
39
+ Multi-label text classification of Italian legislative acts.
40
+
41
+
42
+ ## Training Details
43
+
44
+ ### Training Data
45
+
46
+ The [dataset](https://github.com/dhfbk/gazzetta-ufficiale) used for training the model can be retrieved at our [GitHub account](https://github.com/dhfbk) and is further documented in the above mentioned paper.
47
+
48
+
49
+
50
+ ## Evaluation
51
+
52
+
53
+ ### Results
54
+
55
+ The model achieves a micro-F1 score of 0.873, macro-F1 of 0.471 and a weighted-F1 of 0.864 on the test set (3-fold average).
56
+
57
+
58
+
59
+ ## Citation
60
+
61
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
62
+
63
+ **BibTeX:**
64
+
65
+ TBP, please see above