Model save
Browse files
README.md
CHANGED
@@ -1,21 +1,75 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
|
|
6 |
|
7 |
-
The following
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
-
|
17 |
-
-
|
18 |
-
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_contrast_1024_r_64_alpha_16
|
7 |
+
results: []
|
8 |
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_contrast_1024_r_64_alpha_16
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged](https://huggingface.co/dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6234
|
18 |
+
- Rewards/chosen: 0.0858
|
19 |
+
- Rewards/rejected: -0.1898
|
20 |
+
- Rewards/accuracies: 0.6574
|
21 |
+
- Rewards/margins: 0.2756
|
22 |
+
- Logps/rejected: -198.1188
|
23 |
+
- Logps/chosen: -205.4868
|
24 |
+
- Logits/rejected: 0.7931
|
25 |
+
- Logits/chosen: 0.8315
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
## Training procedure
|
40 |
|
41 |
+
### Training hyperparameters
|
42 |
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0002
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 4
|
49 |
+
- total_train_batch_size: 128
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- lr_scheduler_warmup_ratio: 0.03
|
53 |
+
- num_epochs: 1
|
54 |
+
|
55 |
+
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
59 |
+
| 0.6867 | 0.1 | 19 | 0.6390 | 0.0633 | -0.1318 | 0.6451 | 0.1951 | -197.8286 | -205.5991 | 0.7774 | 0.8133 |
|
60 |
+
| 0.6727 | 0.21 | 38 | 0.6384 | 0.0354 | -0.2285 | 0.6529 | 0.2639 | -198.3123 | -205.7386 | 0.8054 | 0.8432 |
|
61 |
+
| 0.6577 | 0.31 | 57 | 0.6391 | -0.0114 | -0.2258 | 0.6406 | 0.2145 | -198.2988 | -205.9725 | 0.7954 | 0.8346 |
|
62 |
+
| 0.6609 | 0.42 | 76 | 0.6344 | -0.3737 | -0.6175 | 0.6417 | 0.2438 | -200.2571 | -207.7841 | 0.7818 | 0.8194 |
|
63 |
+
| 0.6536 | 0.52 | 95 | 0.6285 | -0.1130 | -0.3816 | 0.6652 | 0.2687 | -199.0778 | -206.4805 | 0.7958 | 0.8350 |
|
64 |
+
| 0.654 | 0.62 | 114 | 0.6342 | 0.0007 | -0.2311 | 0.6484 | 0.2318 | -198.3250 | -205.9122 | 0.7917 | 0.8303 |
|
65 |
+
| 0.6435 | 0.73 | 133 | 0.6258 | 0.0462 | -0.2234 | 0.6562 | 0.2696 | -198.2865 | -205.6845 | 0.7949 | 0.8332 |
|
66 |
+
| 0.6508 | 0.83 | 152 | 0.6234 | 0.0858 | -0.1898 | 0.6574 | 0.2756 | -198.1188 | -205.4868 | 0.7931 | 0.8315 |
|
67 |
+
| 0.6361 | 0.94 | 171 | 0.6269 | 0.1007 | -0.1655 | 0.6618 | 0.2662 | -197.9971 | -205.4121 | 0.7975 | 0.8353 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.32.1
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|