|
|
|
import torch |
|
import os |
|
from huggingface_hub import HfApi |
|
from pathlib import Path |
|
from diffusers.utils import load_image |
|
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation |
|
from PIL import Image |
|
import numpy as np |
|
|
|
from diffusers import ( |
|
ControlNetModel, |
|
StableDiffusionControlNetPipeline, |
|
UniPCMultistepScheduler, |
|
) |
|
import sys |
|
|
|
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") |
|
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") |
|
|
|
checkpoint = sys.argv[1] |
|
|
|
ada_palette = np.asarray([ |
|
[0, 0, 0], |
|
[120, 120, 120], |
|
[180, 120, 120], |
|
[6, 230, 230], |
|
[80, 50, 50], |
|
[4, 200, 3], |
|
[120, 120, 80], |
|
[140, 140, 140], |
|
[204, 5, 255], |
|
[230, 230, 230], |
|
[4, 250, 7], |
|
[224, 5, 255], |
|
[235, 255, 7], |
|
[150, 5, 61], |
|
[120, 120, 70], |
|
[8, 255, 51], |
|
[255, 6, 82], |
|
[143, 255, 140], |
|
[204, 255, 4], |
|
[255, 51, 7], |
|
[204, 70, 3], |
|
[0, 102, 200], |
|
[61, 230, 250], |
|
[255, 6, 51], |
|
[11, 102, 255], |
|
[255, 7, 71], |
|
[255, 9, 224], |
|
[9, 7, 230], |
|
[220, 220, 220], |
|
[255, 9, 92], |
|
[112, 9, 255], |
|
[8, 255, 214], |
|
[7, 255, 224], |
|
[255, 184, 6], |
|
[10, 255, 71], |
|
[255, 41, 10], |
|
[7, 255, 255], |
|
[224, 255, 8], |
|
[102, 8, 255], |
|
[255, 61, 6], |
|
[255, 194, 7], |
|
[255, 122, 8], |
|
[0, 255, 20], |
|
[255, 8, 41], |
|
[255, 5, 153], |
|
[6, 51, 255], |
|
[235, 12, 255], |
|
[160, 150, 20], |
|
[0, 163, 255], |
|
[140, 140, 140], |
|
[250, 10, 15], |
|
[20, 255, 0], |
|
[31, 255, 0], |
|
[255, 31, 0], |
|
[255, 224, 0], |
|
[153, 255, 0], |
|
[0, 0, 255], |
|
[255, 71, 0], |
|
[0, 235, 255], |
|
[0, 173, 255], |
|
[31, 0, 255], |
|
[11, 200, 200], |
|
[255, 82, 0], |
|
[0, 255, 245], |
|
[0, 61, 255], |
|
[0, 255, 112], |
|
[0, 255, 133], |
|
[255, 0, 0], |
|
[255, 163, 0], |
|
[255, 102, 0], |
|
[194, 255, 0], |
|
[0, 143, 255], |
|
[51, 255, 0], |
|
[0, 82, 255], |
|
[0, 255, 41], |
|
[0, 255, 173], |
|
[10, 0, 255], |
|
[173, 255, 0], |
|
[0, 255, 153], |
|
[255, 92, 0], |
|
[255, 0, 255], |
|
[255, 0, 245], |
|
[255, 0, 102], |
|
[255, 173, 0], |
|
[255, 0, 20], |
|
[255, 184, 184], |
|
[0, 31, 255], |
|
[0, 255, 61], |
|
[0, 71, 255], |
|
[255, 0, 204], |
|
[0, 255, 194], |
|
[0, 255, 82], |
|
[0, 10, 255], |
|
[0, 112, 255], |
|
[51, 0, 255], |
|
[0, 194, 255], |
|
[0, 122, 255], |
|
[0, 255, 163], |
|
[255, 153, 0], |
|
[0, 255, 10], |
|
[255, 112, 0], |
|
[143, 255, 0], |
|
[82, 0, 255], |
|
[163, 255, 0], |
|
[255, 235, 0], |
|
[8, 184, 170], |
|
[133, 0, 255], |
|
[0, 255, 92], |
|
[184, 0, 255], |
|
[255, 0, 31], |
|
[0, 184, 255], |
|
[0, 214, 255], |
|
[255, 0, 112], |
|
[92, 255, 0], |
|
[0, 224, 255], |
|
[112, 224, 255], |
|
[70, 184, 160], |
|
[163, 0, 255], |
|
[153, 0, 255], |
|
[71, 255, 0], |
|
[255, 0, 163], |
|
[255, 204, 0], |
|
[255, 0, 143], |
|
[0, 255, 235], |
|
[133, 255, 0], |
|
[255, 0, 235], |
|
[245, 0, 255], |
|
[255, 0, 122], |
|
[255, 245, 0], |
|
[10, 190, 212], |
|
[214, 255, 0], |
|
[0, 204, 255], |
|
[20, 0, 255], |
|
[255, 255, 0], |
|
[0, 153, 255], |
|
[0, 41, 255], |
|
[0, 255, 204], |
|
[41, 0, 255], |
|
[41, 255, 0], |
|
[173, 0, 255], |
|
[0, 245, 255], |
|
[71, 0, 255], |
|
[122, 0, 255], |
|
[0, 255, 184], |
|
[0, 92, 255], |
|
[184, 255, 0], |
|
[0, 133, 255], |
|
[255, 214, 0], |
|
[25, 194, 194], |
|
[102, 255, 0], |
|
[92, 0, 255], |
|
]) |
|
|
|
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-seg/resolve/main/images/house.png").convert('RGB') |
|
|
|
prompt = "old house in stormy weather with rain and wind" |
|
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values |
|
with torch.no_grad(): |
|
outputs = image_segmentor(pixel_values) |
|
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] |
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) |
|
for label, color in enumerate(ada_palette): |
|
color_seg[seg == label, :] = color |
|
color_seg = color_seg.astype(np.uint8) |
|
image = Image.fromarray(color_seg) |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.manual_seed(0) |
|
out_image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0] |
|
|
|
path = os.path.join(Path.home(), "images", "aa.png") |
|
out_image.save(path) |
|
|
|
api = HfApi() |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png") |
|
|