patrickvonplaten commited on
Commit
c5d43bc
·
1 Parent(s): 941d256
cd_bedroom256_lpips_onestep_sample.png ADDED
control_net_canny.py CHANGED
@@ -33,14 +33,14 @@ canny_image = Image.fromarray(image)
33
 
34
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
35
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
36
- "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
37
  )
38
 
39
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
40
  pipe.enable_model_cpu_offload()
41
 
42
  generator = torch.manual_seed(33)
43
- out_image = pipe("a blue paradise bird in the jungle", num_inference_steps=20, generator=generator, image=canny_image).images[0]
44
 
45
  path = os.path.join(Path.home(), "images", "aa.png")
46
  out_image.save(path)
 
33
 
34
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
35
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
36
+ "runwayml/stable-diffusion-v1-5", controlnet=[controlnet, controlnet], torch_dtype=torch.float16
37
  )
38
 
39
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
40
  pipe.enable_model_cpu_offload()
41
 
42
  generator = torch.manual_seed(33)
43
+ out_image = pipe("a blue paradise bird in the jungle", control_guidance_start=[0.2, 0.2], num_inference_steps=20, generator=generator, image=[canny_image, canny_image]).images[0]
44
 
45
  path = os.path.join(Path.home(), "images", "aa.png")
46
  out_image.save(path)
run_better_trans_clip.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from transformers import CLIPTextConfig, CLIPModel
3
+ import torch
4
+
5
+ config = CLIPTextConfig.from_pretrained("openMUSE/CLIP-ViT-L-14-DataComp.XL-s13B-b90K-penultimate")
6
+
7
+ model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K", text_config=config)
8
+
9
+ model.to_bettertransformer()
10
+
11
+ text_encoder = model.text_model
12
+ text_encoder = torch.compile(text_encoder)
13
+
14
+
run_consistency.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+
4
+ from diffusers import ConsistencyModelPipeline, UNet2DModel
5
+
6
+ device = "cpu"
7
+ # Load the cd_bedroom256_lpips checkpoint.
8
+ model_id_or_path = "openai/diffusers-cd_bedroom256_lpips"
9
+ pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path)
10
+ pipe.to(device)
11
+
12
+ # Multistep sampling
13
+ # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
14
+ # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L83
15
+ for _ in range(10):
16
+ image = pipe(timesteps=[17, 0]).images[0]
17
+ image.show()
18
+
run_lora CHANGED
@@ -12,7 +12,6 @@ from PIL import Image
12
  from io import BytesIO
13
 
14
  # path = sys.argv[1]
15
- path = "runwayml/stable-diffusion-v1-5"
16
  path = "gsdf/Counterfeit-V2.5"
17
  # path = "stabilityai/stable-diffusion-2-1"
18
 
 
12
  from io import BytesIO
13
 
14
  # path = sys.argv[1]
 
15
  path = "gsdf/Counterfeit-V2.5"
16
  # path = "stabilityai/stable-diffusion-2-1"
17
 
run_no_grad.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from transformers import BertModel
3
+ import torch
4
+ import time
5
+
6
+
7
+ model = BertModel.from_pretrained("bert-base-uncased")
8
+ model.to("cuda")
9
+
10
+ input_ids = torch.ones((16, 256), dtype=torch.long)
11
+ input_ids = input_ids.to("cuda")
12
+
13
+ model.requires_grad_(False)
14
+
15
+ start_time = time.time()
16
+
17
+ for _ in range(5):
18
+ with torch.no_grad():
19
+ logits = model(input_ids)
20
+
21
+ print(time.time() - start_time)
22
+
run_safety.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import PIL
3
+ from transformers import CLIPImageProcessor
4
+ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
5
+
6
+ feature_extractor = CLIPImageProcessor.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="feature_extractor")
7
+ safety_checker = StableDiffusionSafetyChecker.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="safety_checker")
8
+ device = "cpu"
9
+
10
+ image = PIL.Image.open("/home/patrick/images/0.png")
11
+
12
+ safety_checker_input = feature_extractor(image, return_tensors="pt").to(device)
13
+ image, has_nsfw_concept = safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
run_sd_xl.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!/usr/bin/env python3
2
+ from diffusers import StableDiffusionXLPipeline
sd_2_1_API.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import requests
3
+ import io
4
+ from PIL import Image
5
+
6
+ API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
7
+ headers = {"Authorization": "Bearer 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"}
8
+
9
+ def query(payload):
10
+ response = requests.post(API_URL, headers=headers, json=payload)
11
+ return response.content
12
+ image_bytes = query({
13
+ "inputs": "Astronaut riding a horse",
14
+ })
15
+ # You can access the image with PIL.Image for example
16
+ image = Image.open(io.BytesIO(image_bytes))
17
+ import ipdb; ipdb.set_trace()