patrickvonplaten
commited on
Commit
·
c5d43bc
1
Parent(s):
941d256
finish
Browse files- cd_bedroom256_lpips_onestep_sample.png +0 -0
- control_net_canny.py +2 -2
- run_better_trans_clip.py +14 -0
- run_consistency.py +18 -0
- run_lora +0 -1
- run_no_grad.py +22 -0
- run_safety.py +13 -0
- run_sd_xl.py +2 -0
- sd_2_1_API.py +17 -0
cd_bedroom256_lpips_onestep_sample.png
ADDED
control_net_canny.py
CHANGED
@@ -33,14 +33,14 @@ canny_image = Image.fromarray(image)
|
|
33 |
|
34 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
35 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
37 |
)
|
38 |
|
39 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
40 |
pipe.enable_model_cpu_offload()
|
41 |
|
42 |
generator = torch.manual_seed(33)
|
43 |
-
out_image = pipe("a blue paradise bird in the jungle", num_inference_steps=20, generator=generator, image=canny_image).images[0]
|
44 |
|
45 |
path = os.path.join(Path.home(), "images", "aa.png")
|
46 |
out_image.save(path)
|
|
|
33 |
|
34 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
35 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
+
"runwayml/stable-diffusion-v1-5", controlnet=[controlnet, controlnet], torch_dtype=torch.float16
|
37 |
)
|
38 |
|
39 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
40 |
pipe.enable_model_cpu_offload()
|
41 |
|
42 |
generator = torch.manual_seed(33)
|
43 |
+
out_image = pipe("a blue paradise bird in the jungle", control_guidance_start=[0.2, 0.2], num_inference_steps=20, generator=generator, image=[canny_image, canny_image]).images[0]
|
44 |
|
45 |
path = os.path.join(Path.home(), "images", "aa.png")
|
46 |
out_image.save(path)
|
run_better_trans_clip.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from transformers import CLIPTextConfig, CLIPModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
config = CLIPTextConfig.from_pretrained("openMUSE/CLIP-ViT-L-14-DataComp.XL-s13B-b90K-penultimate")
|
6 |
+
|
7 |
+
model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K", text_config=config)
|
8 |
+
|
9 |
+
model.to_bettertransformer()
|
10 |
+
|
11 |
+
text_encoder = model.text_model
|
12 |
+
text_encoder = torch.compile(text_encoder)
|
13 |
+
|
14 |
+
|
run_consistency.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from diffusers import ConsistencyModelPipeline, UNet2DModel
|
5 |
+
|
6 |
+
device = "cpu"
|
7 |
+
# Load the cd_bedroom256_lpips checkpoint.
|
8 |
+
model_id_or_path = "openai/diffusers-cd_bedroom256_lpips"
|
9 |
+
pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path)
|
10 |
+
pipe.to(device)
|
11 |
+
|
12 |
+
# Multistep sampling
|
13 |
+
# Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
|
14 |
+
# https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L83
|
15 |
+
for _ in range(10):
|
16 |
+
image = pipe(timesteps=[17, 0]).images[0]
|
17 |
+
image.show()
|
18 |
+
|
run_lora
CHANGED
@@ -12,7 +12,6 @@ from PIL import Image
|
|
12 |
from io import BytesIO
|
13 |
|
14 |
# path = sys.argv[1]
|
15 |
-
path = "runwayml/stable-diffusion-v1-5"
|
16 |
path = "gsdf/Counterfeit-V2.5"
|
17 |
# path = "stabilityai/stable-diffusion-2-1"
|
18 |
|
|
|
12 |
from io import BytesIO
|
13 |
|
14 |
# path = sys.argv[1]
|
|
|
15 |
path = "gsdf/Counterfeit-V2.5"
|
16 |
# path = "stabilityai/stable-diffusion-2-1"
|
17 |
|
run_no_grad.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from transformers import BertModel
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
|
6 |
+
|
7 |
+
model = BertModel.from_pretrained("bert-base-uncased")
|
8 |
+
model.to("cuda")
|
9 |
+
|
10 |
+
input_ids = torch.ones((16, 256), dtype=torch.long)
|
11 |
+
input_ids = input_ids.to("cuda")
|
12 |
+
|
13 |
+
model.requires_grad_(False)
|
14 |
+
|
15 |
+
start_time = time.time()
|
16 |
+
|
17 |
+
for _ in range(5):
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(input_ids)
|
20 |
+
|
21 |
+
print(time.time() - start_time)
|
22 |
+
|
run_safety.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import PIL
|
3 |
+
from transformers import CLIPImageProcessor
|
4 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
5 |
+
|
6 |
+
feature_extractor = CLIPImageProcessor.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="feature_extractor")
|
7 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="safety_checker")
|
8 |
+
device = "cpu"
|
9 |
+
|
10 |
+
image = PIL.Image.open("/home/patrick/images/0.png")
|
11 |
+
|
12 |
+
safety_checker_input = feature_extractor(image, return_tensors="pt").to(device)
|
13 |
+
image, has_nsfw_concept = safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
run_sd_xl.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from diffusers import StableDiffusionXLPipeline
|
sd_2_1_API.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
|
7 |
+
headers = {"Authorization": "Bearer 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"}
|
8 |
+
|
9 |
+
def query(payload):
|
10 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
11 |
+
return response.content
|
12 |
+
image_bytes = query({
|
13 |
+
"inputs": "Astronaut riding a horse",
|
14 |
+
})
|
15 |
+
# You can access the image with PIL.Image for example
|
16 |
+
image = Image.open(io.BytesIO(image_bytes))
|
17 |
+
import ipdb; ipdb.set_trace()
|