Yazhou Cao
commited on
Commit
·
8399353
1
Parent(s):
eca46f1
added example in README
Browse files
README.md
CHANGED
@@ -8,6 +8,44 @@ license: apache-2.0
|
|
8 |
|
9 |
# LLaVA Model Card
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
## Model details
|
12 |
|
13 |
**Model type:**
|
@@ -42,4 +80,4 @@ The primary intended users of the model are researchers and hobbyists in compute
|
|
42 |
- 40K ShareGPT data.
|
43 |
|
44 |
## Evaluation dataset
|
45 |
-
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|
|
|
8 |
|
9 |
# LLaVA Model Card
|
10 |
|
11 |
+
## SGLang
|
12 |
+
This contains the necessary files to run LLaVA-1.6 34B on SGLang. You can run the server with the following command:
|
13 |
+
|
14 |
+
`python -m sglang.launch_server --model-path dillonlaird/hf-llava-v1.6-34b --port 30000`
|
15 |
+
|
16 |
+
There seems to be issues with the chat formatting when using the sglang interface so I recommend querying the server directly and formatting the string yourself:
|
17 |
+
|
18 |
+
```python
|
19 |
+
import requests
|
20 |
+
from transformers import AutoTokenizer
|
21 |
+
|
22 |
+
|
23 |
+
def generate(image_path: str, prompt: str, tokenizer):
|
24 |
+
chat = [
|
25 |
+
{"role": "system", "content": "Answer the question."},
|
26 |
+
{"role": "user", "content": "<image>\n" + prompt},
|
27 |
+
]
|
28 |
+
chat_str = tokenizer.apply_chat_template(chat, tokenize=False)
|
29 |
+
chat_str += "<|img_start|>assistant\n"
|
30 |
+
sampling_params = {"temperature": 0.2, "max_new_tokens": 1536}
|
31 |
+
res = requests.post(
|
32 |
+
"http://localhost:30000/generate",
|
33 |
+
json={
|
34 |
+
"text": chat_str,
|
35 |
+
"image_data": image_path,
|
36 |
+
"sampling_params": sampling_params,
|
37 |
+
},
|
38 |
+
)
|
39 |
+
return res.json()["text"]
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b")
|
44 |
+
image_path = "path/to/image.jpg"
|
45 |
+
prompt = "What is the name of the mountain?"
|
46 |
+
desc = generate(image_path, prompt, tokenizer)
|
47 |
+
```
|
48 |
+
|
49 |
## Model details
|
50 |
|
51 |
**Model type:**
|
|
|
80 |
- 40K ShareGPT data.
|
81 |
|
82 |
## Evaluation dataset
|
83 |
+
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|