File size: 2,742 Bytes
ef7379a 0d5d042 ef7379a 0d5d042 ef7379a 0d5d042 ef7379a 0d5d042 ef7379a 0d5d042 ef7379a 0d5d042 ef7379a 0d5d042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: FastJobs--Visual_Emotional_Analysis
split: train[:-1]
args: FastJobs--Visual_Emotional_Analysis
metrics:
- name: Accuracy
type: accuracy
value: 0.5625
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6256
- Accuracy: 0.5625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 10 | 1.7794 | 0.4875 |
| No log | 2.0 | 20 | 1.6813 | 0.4938 |
| 0.2276 | 3.0 | 30 | 1.7602 | 0.4875 |
| 0.2276 | 4.0 | 40 | 1.9172 | 0.4562 |
| 0.2048 | 5.0 | 50 | 1.9316 | 0.4625 |
| 0.2048 | 6.0 | 60 | 1.8285 | 0.5 |
| 0.2048 | 7.0 | 70 | 1.6341 | 0.5687 |
| 0.1617 | 8.0 | 80 | 1.7461 | 0.5375 |
| 0.1617 | 9.0 | 90 | 1.6544 | 0.5312 |
| 0.1766 | 10.0 | 100 | 1.9449 | 0.4875 |
| 0.1766 | 11.0 | 110 | 1.7565 | 0.5125 |
| 0.1766 | 12.0 | 120 | 1.8936 | 0.5 |
| 0.1979 | 13.0 | 130 | 1.6812 | 0.5687 |
| 0.1979 | 14.0 | 140 | 1.7619 | 0.5188 |
| 0.1694 | 15.0 | 150 | 1.6903 | 0.55 |
### Framework versions
- Transformers 4.33.1
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|