File size: 7,498 Bytes
a547ce1
 
 
 
 
 
 
 
 
 
c114932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a547ce1
 
 
 
 
 
 
 
c114932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a547ce1
c114932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a547ce1
c114932
a547ce1
c114932
a547ce1
c114932
 
 
a547ce1
 
 
 
 
 
 
c114932
 
 
 
 
 
 
 
 
 
 
a547ce1
 
 
 
 
 
 
 
 
 
 
c114932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a547ce1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language: en
tags:
- exbert

license: apache-2.0
datasets:
- openwebtext
---

# Model Card for DistilRoBERTa base

# Table of Contents

1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training Details](#training-details)
5. [Evaluation](#evaluation)
6. [Environmental Impact](#environmental-impact)
7. [Citation](#citation)
8. [How To Get Started With the Model](#how-to-get-started-with-the-model)

# Model Details

## Model Description

This model is a distilled version of the [RoBERTa-base model](https://huggingface.co/roberta-base). It follows the same training procedure as [DistilBERT](https://huggingface.co/distilbert-base-uncased).
The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation).
This model is case-sensitive: it makes a difference between english and English.

The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base).
On average DistilRoBERTa is twice as fast as Roberta-base.

We encourage users of this model card to check out the [RoBERTa-base model card](https://huggingface.co/roberta-base) to learn more about usage, limitations and potential biases.

- **Developed by:** Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:** [RoBERTa-base model card](https://huggingface.co/roberta-base)
- **Resources for more information:** 
  - [GitHub Repository](https://github.com/huggingface/transformers/blob/main/examples/research_projects/distillation/README.md)
  - [Associated Paper](https://arxiv.org/abs/1910.01108)
  
# Uses

## Direct Use and Downstream Use

You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that interests you.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2.

## Out of Scope Use

The model should not be used to intentionally create hostile or alienating environments for people. The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model.

# Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilroberta-base')
>>> unmasker("The man worked as a <mask>.")
[{'score': 0.1237526461482048,
  'sequence': 'The man worked as a waiter.',
  'token': 38233,
  'token_str': ' waiter'},
 {'score': 0.08968018740415573,
  'sequence': 'The man worked as a waitress.',
  'token': 35698,
  'token_str': ' waitress'},
 {'score': 0.08387645334005356,
  'sequence': 'The man worked as a bartender.',
  'token': 33080,
  'token_str': ' bartender'},
 {'score': 0.061059024184942245,
  'sequence': 'The man worked as a mechanic.',
  'token': 25682,
  'token_str': ' mechanic'},
 {'score': 0.03804653510451317,
  'sequence': 'The man worked as a courier.',
  'token': 37171,
  'token_str': ' courier'}]
  
>>> unmasker("The woman worked as a <mask>.")
[{'score': 0.23149248957633972,
  'sequence': 'The woman worked as a waitress.',
  'token': 35698,
  'token_str': ' waitress'},
 {'score': 0.07563332468271255,
  'sequence': 'The woman worked as a waiter.',
  'token': 38233,
  'token_str': ' waiter'},
 {'score': 0.06983394920825958,
  'sequence': 'The woman worked as a bartender.',
  'token': 33080,
  'token_str': ' bartender'},
 {'score': 0.05411609262228012,
  'sequence': 'The woman worked as a nurse.',
  'token': 9008,
  'token_str': ' nurse'},
 {'score': 0.04995106905698776,
  'sequence': 'The woman worked as a maid.',
  'token': 29754,
  'token_str': ' maid'}]
```

## Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

# Training Details

DistilRoBERTa was pre-trained on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa). See the [roberta-base model card](https://huggingface.co/roberta-base/blob/main/README.md) for further details on training.

# Evaluation

When fine-tuned on downstream tasks, this model achieves the following results (see [GitHub Repo](https://github.com/huggingface/transformers/blob/main/examples/research_projects/distillation/README.md)):

Glue test results:

| Task | MNLI | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
|      | 84.0 | 89.4 | 90.8 | 92.5  | 59.3 | 88.3  | 86.6 | 67.9 |

# Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed

# Citation

```bibtex
@article{Sanh2019DistilBERTAD,
  title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
  author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
  journal={ArXiv},
  year={2019},
  volume={abs/1910.01108}
}
```

APA
- Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

# How to Get Started With the Model

You can use the model directly with a pipeline for masked language modeling: 

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilroberta-base')
>>> unmasker("Hello I'm a <mask> model.")
[{'score': 0.04673689603805542,
  'sequence': "Hello I'm a business model.",
  'token': 265,
  'token_str': ' business'},
 {'score': 0.03846118599176407,
  'sequence': "Hello I'm a freelance model.",
  'token': 18150,
  'token_str': ' freelance'},
 {'score': 0.03308931365609169,
  'sequence': "Hello I'm a fashion model.",
  'token': 2734,
  'token_str': ' fashion'},
 {'score': 0.03018997237086296,
  'sequence': "Hello I'm a role model.",
  'token': 774,
  'token_str': ' role'},
 {'score': 0.02111748233437538,
  'sequence': "Hello I'm a Playboy model.",
  'token': 24526,
  'token_str': ' Playboy'}]
```

<a href="https://huggingface.co/exbert/?model=distilroberta-base">
	<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>