Upload GPTOptim
Browse files- README.md +199 -0
- config.json +295 -0
- configuration_gpt_optimized.py +22 -0
- model.safetensors +3 -0
- modeling_gpt_optimized.py +200 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/optimized-gpt2-1b",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"all_reduce_scores": {
|
5 |
+
"0": "NON_PARTICIPATING",
|
6 |
+
"1": "NON_PARTICIPATING",
|
7 |
+
"10": "NON_PARTICIPATING",
|
8 |
+
"100": "NON_PARTICIPATING",
|
9 |
+
"101": "NON_PARTICIPATING",
|
10 |
+
"102": "NON_PARTICIPATING",
|
11 |
+
"103": "NON_PARTICIPATING",
|
12 |
+
"104": "NON_PARTICIPATING",
|
13 |
+
"105": "SUCCESS",
|
14 |
+
"106": "NON_PARTICIPATING",
|
15 |
+
"107": "NON_PARTICIPATING",
|
16 |
+
"108": "NON_PARTICIPATING",
|
17 |
+
"109": "NON_PARTICIPATING",
|
18 |
+
"11": "NON_PARTICIPATING",
|
19 |
+
"110": "NON_PARTICIPATING",
|
20 |
+
"111": "NON_PARTICIPATING",
|
21 |
+
"112": "NON_PARTICIPATING",
|
22 |
+
"113": "NON_PARTICIPATING",
|
23 |
+
"114": "NON_PARTICIPATING",
|
24 |
+
"115": "SUCCESS",
|
25 |
+
"116": "NON_PARTICIPATING",
|
26 |
+
"117": "NON_PARTICIPATING",
|
27 |
+
"118": "NON_PARTICIPATING",
|
28 |
+
"119": "NON_PARTICIPATING",
|
29 |
+
"12": "NON_PARTICIPATING",
|
30 |
+
"120": "NON_PARTICIPATING",
|
31 |
+
"121": "NON_PARTICIPATING",
|
32 |
+
"122": "NON_PARTICIPATING",
|
33 |
+
"123": "NON_PARTICIPATING",
|
34 |
+
"124": "NON_PARTICIPATING",
|
35 |
+
"125": "NON_PARTICIPATING",
|
36 |
+
"126": "NON_PARTICIPATING",
|
37 |
+
"127": "NON_PARTICIPATING",
|
38 |
+
"128": "NON_PARTICIPATING",
|
39 |
+
"129": "NON_PARTICIPATING",
|
40 |
+
"13": "NON_PARTICIPATING",
|
41 |
+
"130": "NON_PARTICIPATING",
|
42 |
+
"131": "NON_PARTICIPATING",
|
43 |
+
"132": "NON_PARTICIPATING",
|
44 |
+
"133": "NON_PARTICIPATING",
|
45 |
+
"134": "NON_PARTICIPATING",
|
46 |
+
"135": "NON_PARTICIPATING",
|
47 |
+
"136": "NON_PARTICIPATING",
|
48 |
+
"137": "NON_PARTICIPATING",
|
49 |
+
"138": "NON_PARTICIPATING",
|
50 |
+
"139": "SUCCESS",
|
51 |
+
"14": "NON_PARTICIPATING",
|
52 |
+
"140": "NON_PARTICIPATING",
|
53 |
+
"141": "NON_PARTICIPATING",
|
54 |
+
"142": "NON_PARTICIPATING",
|
55 |
+
"143": "NON_PARTICIPATING",
|
56 |
+
"144": "NON_PARTICIPATING",
|
57 |
+
"145": "NON_PARTICIPATING",
|
58 |
+
"146": "SUCCESS",
|
59 |
+
"147": "NON_PARTICIPATING",
|
60 |
+
"148": "NON_PARTICIPATING",
|
61 |
+
"149": "NON_PARTICIPATING",
|
62 |
+
"15": "SUCCESS",
|
63 |
+
"150": "NON_PARTICIPATING",
|
64 |
+
"151": "NON_PARTICIPATING",
|
65 |
+
"152": "NON_PARTICIPATING",
|
66 |
+
"153": "SUCCESS",
|
67 |
+
"154": "NON_PARTICIPATING",
|
68 |
+
"155": "SUCCESS",
|
69 |
+
"156": "NON_PARTICIPATING",
|
70 |
+
"157": "NON_PARTICIPATING",
|
71 |
+
"158": "NON_PARTICIPATING",
|
72 |
+
"159": "NON_PARTICIPATING",
|
73 |
+
"16": "SUCCESS",
|
74 |
+
"160": "NON_PARTICIPATING",
|
75 |
+
"161": "NON_PARTICIPATING",
|
76 |
+
"162": "NON_PARTICIPATING",
|
77 |
+
"163": "NON_PARTICIPATING",
|
78 |
+
"164": "NON_PARTICIPATING",
|
79 |
+
"165": "NON_PARTICIPATING",
|
80 |
+
"166": "SUCCESS",
|
81 |
+
"167": "NON_PARTICIPATING",
|
82 |
+
"168": "NON_PARTICIPATING",
|
83 |
+
"169": "SUCCESS",
|
84 |
+
"17": "NON_PARTICIPATING",
|
85 |
+
"170": "NON_PARTICIPATING",
|
86 |
+
"171": "SUCCESS",
|
87 |
+
"172": "NON_PARTICIPATING",
|
88 |
+
"173": "NON_PARTICIPATING",
|
89 |
+
"174": "NON_PARTICIPATING",
|
90 |
+
"175": "NON_PARTICIPATING",
|
91 |
+
"176": "NON_PARTICIPATING",
|
92 |
+
"177": "NON_PARTICIPATING",
|
93 |
+
"178": "NON_PARTICIPATING",
|
94 |
+
"179": "NON_PARTICIPATING",
|
95 |
+
"18": "NON_PARTICIPATING",
|
96 |
+
"180": "NON_PARTICIPATING",
|
97 |
+
"181": "NON_PARTICIPATING",
|
98 |
+
"182": "NON_PARTICIPATING",
|
99 |
+
"183": "NON_PARTICIPATING",
|
100 |
+
"184": "NON_PARTICIPATING",
|
101 |
+
"185": "NON_PARTICIPATING",
|
102 |
+
"186": "NON_PARTICIPATING",
|
103 |
+
"187": "NON_PARTICIPATING",
|
104 |
+
"188": "NON_PARTICIPATING",
|
105 |
+
"189": "NON_PARTICIPATING",
|
106 |
+
"19": "NON_PARTICIPATING",
|
107 |
+
"190": "NON_PARTICIPATING",
|
108 |
+
"191": "NON_PARTICIPATING",
|
109 |
+
"192": "NON_PARTICIPATING",
|
110 |
+
"193": "NON_PARTICIPATING",
|
111 |
+
"194": "NON_PARTICIPATING",
|
112 |
+
"195": "NON_PARTICIPATING",
|
113 |
+
"196": "NON_PARTICIPATING",
|
114 |
+
"197": "SUCCESS",
|
115 |
+
"198": "NON_PARTICIPATING",
|
116 |
+
"199": "NON_PARTICIPATING",
|
117 |
+
"2": "NON_PARTICIPATING",
|
118 |
+
"20": "NON_PARTICIPATING",
|
119 |
+
"200": "NON_PARTICIPATING",
|
120 |
+
"201": "NON_PARTICIPATING",
|
121 |
+
"202": "NON_PARTICIPATING",
|
122 |
+
"203": "SUCCESS",
|
123 |
+
"204": "NON_PARTICIPATING",
|
124 |
+
"205": "NON_PARTICIPATING",
|
125 |
+
"206": "NON_PARTICIPATING",
|
126 |
+
"207": "NON_PARTICIPATING",
|
127 |
+
"208": "NON_PARTICIPATING",
|
128 |
+
"209": "NON_PARTICIPATING",
|
129 |
+
"21": "NON_PARTICIPATING",
|
130 |
+
"210": "NON_PARTICIPATING",
|
131 |
+
"211": "NON_PARTICIPATING",
|
132 |
+
"212": "NON_PARTICIPATING",
|
133 |
+
"213": "NON_PARTICIPATING",
|
134 |
+
"214": "NON_PARTICIPATING",
|
135 |
+
"215": "NON_PARTICIPATING",
|
136 |
+
"216": "NON_PARTICIPATING",
|
137 |
+
"217": "NON_PARTICIPATING",
|
138 |
+
"218": "SUCCESS",
|
139 |
+
"219": "NON_PARTICIPATING",
|
140 |
+
"22": "SUCCESS",
|
141 |
+
"220": "NON_PARTICIPATING",
|
142 |
+
"221": "NON_PARTICIPATING",
|
143 |
+
"222": "NON_PARTICIPATING",
|
144 |
+
"223": "NON_PARTICIPATING",
|
145 |
+
"224": "NON_PARTICIPATING",
|
146 |
+
"225": "NON_PARTICIPATING",
|
147 |
+
"226": "NON_PARTICIPATING",
|
148 |
+
"227": "NON_PARTICIPATING",
|
149 |
+
"228": "NON_PARTICIPATING",
|
150 |
+
"229": "NON_PARTICIPATING",
|
151 |
+
"23": "NON_PARTICIPATING",
|
152 |
+
"230": "NON_PARTICIPATING",
|
153 |
+
"231": "NON_PARTICIPATING",
|
154 |
+
"232": "NON_PARTICIPATING",
|
155 |
+
"233": "NON_PARTICIPATING",
|
156 |
+
"234": "NON_PARTICIPATING",
|
157 |
+
"235": "NON_PARTICIPATING",
|
158 |
+
"236": "NON_PARTICIPATING",
|
159 |
+
"237": "NON_PARTICIPATING",
|
160 |
+
"238": "NON_PARTICIPATING",
|
161 |
+
"239": "NON_PARTICIPATING",
|
162 |
+
"24": "NON_PARTICIPATING",
|
163 |
+
"240": "NON_PARTICIPATING",
|
164 |
+
"241": "SUCCESS",
|
165 |
+
"242": "NON_PARTICIPATING",
|
166 |
+
"243": "NON_PARTICIPATING",
|
167 |
+
"244": "NON_PARTICIPATING",
|
168 |
+
"245": "NON_PARTICIPATING",
|
169 |
+
"246": "NON_PARTICIPATING",
|
170 |
+
"247": "NON_PARTICIPATING",
|
171 |
+
"248": "NON_PARTICIPATING",
|
172 |
+
"249": "NON_PARTICIPATING",
|
173 |
+
"25": "SUCCESS",
|
174 |
+
"250": "NON_PARTICIPATING",
|
175 |
+
"251": "NON_PARTICIPATING",
|
176 |
+
"252": "NON_PARTICIPATING",
|
177 |
+
"253": "NON_PARTICIPATING",
|
178 |
+
"254": "NON_PARTICIPATING",
|
179 |
+
"255": "NON_PARTICIPATING",
|
180 |
+
"26": "NON_PARTICIPATING",
|
181 |
+
"27": "NON_PARTICIPATING",
|
182 |
+
"28": "NON_PARTICIPATING",
|
183 |
+
"29": "NON_PARTICIPATING",
|
184 |
+
"3": "NON_PARTICIPATING",
|
185 |
+
"30": "NON_PARTICIPATING",
|
186 |
+
"31": "NON_PARTICIPATING",
|
187 |
+
"32": "NON_PARTICIPATING",
|
188 |
+
"33": "NON_PARTICIPATING",
|
189 |
+
"34": "NON_PARTICIPATING",
|
190 |
+
"35": "NON_PARTICIPATING",
|
191 |
+
"36": "NON_PARTICIPATING",
|
192 |
+
"37": "SUCCESS",
|
193 |
+
"38": "NON_PARTICIPATING",
|
194 |
+
"39": "SUCCESS",
|
195 |
+
"4": "SUCCESS",
|
196 |
+
"40": "NON_PARTICIPATING",
|
197 |
+
"41": "NON_PARTICIPATING",
|
198 |
+
"42": "NON_PARTICIPATING",
|
199 |
+
"43": "NON_PARTICIPATING",
|
200 |
+
"44": "NON_PARTICIPATING",
|
201 |
+
"45": "NON_PARTICIPATING",
|
202 |
+
"46": "NON_PARTICIPATING",
|
203 |
+
"47": "NON_PARTICIPATING",
|
204 |
+
"48": "NON_PARTICIPATING",
|
205 |
+
"49": "NON_PARTICIPATING",
|
206 |
+
"5": "NON_PARTICIPATING",
|
207 |
+
"50": "SUCCESS",
|
208 |
+
"51": "NON_PARTICIPATING",
|
209 |
+
"52": "NON_PARTICIPATING",
|
210 |
+
"53": "NON_PARTICIPATING",
|
211 |
+
"54": "NON_PARTICIPATING",
|
212 |
+
"55": "NON_PARTICIPATING",
|
213 |
+
"56": "NON_PARTICIPATING",
|
214 |
+
"57": "SUCCESS",
|
215 |
+
"58": "NON_PARTICIPATING",
|
216 |
+
"59": "NON_PARTICIPATING",
|
217 |
+
"6": "NON_PARTICIPATING",
|
218 |
+
"60": "NON_PARTICIPATING",
|
219 |
+
"61": "NON_PARTICIPATING",
|
220 |
+
"62": "NON_PARTICIPATING",
|
221 |
+
"63": "NON_PARTICIPATING",
|
222 |
+
"64": "NON_PARTICIPATING",
|
223 |
+
"65": "SUCCESS",
|
224 |
+
"66": "NON_PARTICIPATING",
|
225 |
+
"67": "NON_PARTICIPATING",
|
226 |
+
"68": "SUCCESS",
|
227 |
+
"69": "NON_PARTICIPATING",
|
228 |
+
"7": "NON_PARTICIPATING",
|
229 |
+
"70": "NON_PARTICIPATING",
|
230 |
+
"71": "NON_PARTICIPATING",
|
231 |
+
"72": "SUCCESS",
|
232 |
+
"73": "SUCCESS",
|
233 |
+
"74": "NON_PARTICIPATING",
|
234 |
+
"75": "NON_PARTICIPATING",
|
235 |
+
"76": "SUCCESS",
|
236 |
+
"77": "NON_PARTICIPATING",
|
237 |
+
"78": "NON_PARTICIPATING",
|
238 |
+
"79": "NON_PARTICIPATING",
|
239 |
+
"8": "NON_PARTICIPATING",
|
240 |
+
"80": "SUCCESS",
|
241 |
+
"81": "NON_PARTICIPATING",
|
242 |
+
"82": "NON_PARTICIPATING",
|
243 |
+
"83": "NON_PARTICIPATING",
|
244 |
+
"84": "NON_PARTICIPATING",
|
245 |
+
"85": "NON_PARTICIPATING",
|
246 |
+
"86": "NON_PARTICIPATING",
|
247 |
+
"87": "NON_PARTICIPATING",
|
248 |
+
"88": "NON_PARTICIPATING",
|
249 |
+
"89": "NON_PARTICIPATING",
|
250 |
+
"9": "NON_PARTICIPATING",
|
251 |
+
"90": "NON_PARTICIPATING",
|
252 |
+
"91": "SUCCESS",
|
253 |
+
"92": "NON_PARTICIPATING",
|
254 |
+
"93": "NON_PARTICIPATING",
|
255 |
+
"94": "NON_PARTICIPATING",
|
256 |
+
"95": "NON_PARTICIPATING",
|
257 |
+
"96": "NON_PARTICIPATING",
|
258 |
+
"97": "NON_PARTICIPATING",
|
259 |
+
"98": "NON_PARTICIPATING",
|
260 |
+
"99": "SUCCESS"
|
261 |
+
},
|
262 |
+
"architectures": [
|
263 |
+
"GPTOptim"
|
264 |
+
],
|
265 |
+
"attn_pdrop": 0.1,
|
266 |
+
"auto_map": {
|
267 |
+
"AutoConfig": "configuration_gpt_optimized.GPTOptimConfig",
|
268 |
+
"AutoModelForCausalLM": "modeling_gpt_optimized.GPTOptim"
|
269 |
+
},
|
270 |
+
"block_size": 1024,
|
271 |
+
"bos_token_id": 50256,
|
272 |
+
"embd_pdrop": 0.1,
|
273 |
+
"eos_token_id": 50256,
|
274 |
+
"initializer_range": 0.02,
|
275 |
+
"layer_norm_epsilon": 1e-05,
|
276 |
+
"model_type": "gpt_optimized",
|
277 |
+
"n_embd": 1280,
|
278 |
+
"n_head": 32,
|
279 |
+
"n_inner": null,
|
280 |
+
"n_layer": 48,
|
281 |
+
"n_positions": 1024,
|
282 |
+
"reorder_and_upcast_attn": false,
|
283 |
+
"resid_pdrop": 0.1,
|
284 |
+
"scale_attn_by_inverse_layer_idx": false,
|
285 |
+
"scale_attn_weights": true,
|
286 |
+
"summary_activation": null,
|
287 |
+
"summary_first_dropout": 0.1,
|
288 |
+
"summary_proj_to_labels": true,
|
289 |
+
"summary_type": "cls_index",
|
290 |
+
"summary_use_proj": true,
|
291 |
+
"torch_dtype": "float32",
|
292 |
+
"transformers_version": "4.39.3",
|
293 |
+
"use_cache": true,
|
294 |
+
"vocab_size": 50257
|
295 |
+
}
|
configuration_gpt_optimized.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, GPT2Config
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class GPTOptimConfig(GPT2Config):
|
6 |
+
model_type = "gpt_optimized"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
block_size: int = 1024, # max sequence length
|
11 |
+
vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
12 |
+
n_layer: int = 16, # number of layers
|
13 |
+
n_head: int = 16, # number of heads
|
14 |
+
n_embd: int = 1024, # embedding dimension
|
15 |
+
**kwargs,
|
16 |
+
):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.block_size = block_size
|
19 |
+
self.vocab_size = vocab_size
|
20 |
+
self.n_layer = n_layer
|
21 |
+
self.n_head = n_head
|
22 |
+
self.n_embd = n_embd
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2c240204fac1bf66e112ce3be2384a0097a2ea95b57ed2a4896c6cd01ecf5f7
|
3 |
+
size 4040701744
|
modeling_gpt_optimized.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import CrossEntropyLoss, functional as F
|
4 |
+
from transformers import PreTrainedModel, GPT2PreTrainedModel
|
5 |
+
from .configuration_gpt_optimized import GPTOptimConfig
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
7 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
8 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
|
11 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
12 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
13 |
+
|
14 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
15 |
+
Args:
|
16 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
17 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
18 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
19 |
+
sequence tokens in the vocabulary.
|
20 |
+
|
21 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
22 |
+
`input_ids`.
|
23 |
+
|
24 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
25 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
26 |
+
|
27 |
+
[What are input IDs?](../glossary#input-ids)
|
28 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
29 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
30 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
31 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
32 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
33 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
34 |
+
|
35 |
+
- 1 for tokens that are **not masked**,
|
36 |
+
- 0 for tokens that are **masked**.
|
37 |
+
|
38 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
39 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
40 |
+
`len(past_key_values) + len(input_ids)`
|
41 |
+
|
42 |
+
[What are attention masks?](../glossary#attention-mask)
|
43 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
44 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
45 |
+
1]`:
|
46 |
+
|
47 |
+
- 0 corresponds to a *sentence A* token,
|
48 |
+
- 1 corresponds to a *sentence B* token.
|
49 |
+
|
50 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
51 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
52 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
53 |
+
config.max_position_embeddings - 1]`.
|
54 |
+
|
55 |
+
[What are position IDs?](../glossary#position-ids)
|
56 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
57 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
58 |
+
|
59 |
+
- 1 indicates the head is **not masked**,
|
60 |
+
- 0 indicates the head is **masked**.
|
61 |
+
|
62 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
63 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
64 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
65 |
+
model's internal embedding lookup matrix.
|
66 |
+
|
67 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
68 |
+
`past_key_values`).
|
69 |
+
use_cache (`bool`, *optional*):
|
70 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
71 |
+
`past_key_values`).
|
72 |
+
output_attentions (`bool`, *optional*):
|
73 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
74 |
+
tensors for more detail.
|
75 |
+
output_hidden_states (`bool`, *optional*):
|
76 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
77 |
+
more detail.
|
78 |
+
return_dict (`bool`, *optional*):
|
79 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
80 |
+
"""
|
81 |
+
|
82 |
+
class CausalSelfAttention(nn.Module):
|
83 |
+
|
84 |
+
def __init__(self, config):
|
85 |
+
super().__init__()
|
86 |
+
assert config.n_embd % config.n_head == 0
|
87 |
+
# key, query, value projections for all heads, but in a batch
|
88 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
89 |
+
# output projection
|
90 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
91 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
92 |
+
# regularization
|
93 |
+
self.n_head = config.n_head
|
94 |
+
self.n_embd = config.n_embd
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
98 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
99 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
100 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
101 |
+
qkv = self.c_attn(x)
|
102 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
103 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
104 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
105 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
106 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
|
107 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
108 |
+
# output projection
|
109 |
+
y = self.c_proj(y)
|
110 |
+
return y
|
111 |
+
|
112 |
+
class MLP(nn.Module):
|
113 |
+
|
114 |
+
def __init__(self, config):
|
115 |
+
super().__init__()
|
116 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
117 |
+
self.gelu = nn.GELU(approximate='tanh')
|
118 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
119 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
x = self.c_fc(x)
|
123 |
+
x = self.gelu(x)
|
124 |
+
x = self.c_proj(x)
|
125 |
+
return x
|
126 |
+
|
127 |
+
class Block(nn.Module):
|
128 |
+
|
129 |
+
def __init__(self, config):
|
130 |
+
super().__init__()
|
131 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
132 |
+
self.attn = CausalSelfAttention(config)
|
133 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
134 |
+
self.mlp = MLP(config)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
x = x + self.attn(self.ln_1(x))
|
138 |
+
x = x + self.mlp(self.ln_2(x))
|
139 |
+
return x
|
140 |
+
|
141 |
+
class GPT(nn.Module):
|
142 |
+
|
143 |
+
def __init__(self, config):
|
144 |
+
super().__init__()
|
145 |
+
self.config = config
|
146 |
+
|
147 |
+
self.transformer = nn.ModuleDict(dict(
|
148 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
149 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
150 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
151 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
152 |
+
))
|
153 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
154 |
+
|
155 |
+
# weight sharing scheme
|
156 |
+
self.transformer.wte.weight = self.lm_head.weight
|
157 |
+
|
158 |
+
# init params
|
159 |
+
self.apply(self._init_weights)
|
160 |
+
|
161 |
+
def _init_weights(self, module):
|
162 |
+
if isinstance(module, nn.Linear):
|
163 |
+
std = 0.02
|
164 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
165 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
166 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
167 |
+
if module.bias is not None:
|
168 |
+
torch.nn.init.zeros_(module.bias)
|
169 |
+
elif isinstance(module, nn.Embedding):
|
170 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
171 |
+
|
172 |
+
class GPTOptim(GPT2PreTrainedModel):
|
173 |
+
config_class = GPTOptimConfig
|
174 |
+
|
175 |
+
def __init__(self, config):
|
176 |
+
super().__init__(config)
|
177 |
+
self.model = GPT(
|
178 |
+
config
|
179 |
+
)
|
180 |
+
self.config = config
|
181 |
+
|
182 |
+
def forward(self, input_ids, labels=None):
|
183 |
+
# input_ids is of shape (B, T)
|
184 |
+
B, T = input_ids.size()
|
185 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
186 |
+
# forward the token and posisition embeddings
|
187 |
+
pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
|
188 |
+
pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
189 |
+
tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
|
190 |
+
x = tok_emb + pos_emb
|
191 |
+
# forward the blocks of the transformer
|
192 |
+
for block in self.model.transformer.h:
|
193 |
+
x = block(x)
|
194 |
+
# forward the final layernorm and the classifier
|
195 |
+
x = self.model.transformer.ln_f(x)
|
196 |
+
logits = self.model.lm_head(x) # (B, T, vocab_size)
|
197 |
+
loss = None
|
198 |
+
if labels is not None:
|
199 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
|
200 |
+
return logits, loss
|