update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: whisper-tiny-finetuned-gtzan
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# whisper-tiny-finetuned-gtzan
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4916
|
22 |
+
- Accuracy: 0.91
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 30
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 2.1202 | 1.0 | 57 | 2.0148 | 0.49 |
|
55 |
+
| 1.4611 | 2.0 | 114 | 1.3965 | 0.62 |
|
56 |
+
| 0.9725 | 3.0 | 171 | 0.8726 | 0.82 |
|
57 |
+
| 0.4971 | 4.0 | 228 | 0.7578 | 0.76 |
|
58 |
+
| 0.2255 | 5.0 | 285 | 0.7502 | 0.74 |
|
59 |
+
| 0.2803 | 6.0 | 342 | 0.5457 | 0.84 |
|
60 |
+
| 0.2234 | 7.0 | 399 | 0.7014 | 0.8 |
|
61 |
+
| 0.0845 | 8.0 | 456 | 0.4250 | 0.89 |
|
62 |
+
| 0.0395 | 9.0 | 513 | 0.5069 | 0.9 |
|
63 |
+
| 0.0438 | 10.0 | 570 | 0.4916 | 0.91 |
|
64 |
+
| 0.0442 | 11.0 | 627 | 0.7312 | 0.86 |
|
65 |
+
| 0.002 | 12.0 | 684 | 0.4753 | 0.9 |
|
66 |
+
| 0.0769 | 13.0 | 741 | 0.8024 | 0.86 |
|
67 |
+
| 0.0015 | 14.0 | 798 | 0.6354 | 0.9 |
|
68 |
+
| 0.001 | 15.0 | 855 | 0.5665 | 0.91 |
|
69 |
+
| 0.0008 | 16.0 | 912 | 0.5537 | 0.9 |
|
70 |
+
| 0.0009 | 17.0 | 969 | 0.6251 | 0.88 |
|
71 |
+
| 0.0007 | 18.0 | 1026 | 0.6641 | 0.9 |
|
72 |
+
| 0.0006 | 19.0 | 1083 | 0.5746 | 0.9 |
|
73 |
+
| 0.0006 | 20.0 | 1140 | 0.5893 | 0.9 |
|
74 |
+
| 0.0006 | 21.0 | 1197 | 0.5636 | 0.91 |
|
75 |
+
| 0.0005 | 22.0 | 1254 | 0.5785 | 0.91 |
|
76 |
+
| 0.0118 | 23.0 | 1311 | 0.5674 | 0.91 |
|
77 |
+
| 0.0005 | 24.0 | 1368 | 0.5915 | 0.91 |
|
78 |
+
| 0.0585 | 25.0 | 1425 | 0.5690 | 0.91 |
|
79 |
+
| 0.0004 | 26.0 | 1482 | 0.6043 | 0.9 |
|
80 |
+
| 0.008 | 27.0 | 1539 | 0.5911 | 0.91 |
|
81 |
+
| 0.0208 | 28.0 | 1596 | 0.5973 | 0.91 |
|
82 |
+
| 0.0004 | 29.0 | 1653 | 0.6009 | 0.91 |
|
83 |
+
| 0.0004 | 30.0 | 1710 | 0.6035 | 0.91 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.29.2
|
89 |
+
- Pytorch 2.0.0
|
90 |
+
- Datasets 2.13.1
|
91 |
+
- Tokenizers 0.13.3
|