File size: 1,837 Bytes
b95136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6fcf4
 
b95136a
 
 
 
 
 
96c2db5
85afe1a
96c2db5
 
 
 
 
 
 
 
 
 
 
 
b95136a
 
 
 
 
 
 
85afe1a
b95136a
 
85afe1a
b95136a
 
 
001f7fa
85afe1a
b95136a
 
adaa99e
 
96c2db5
 
85afe1a
 
 
 
adaa99e
 
b95136a
 
85afe1a
 
 
b95136a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- en
license: mit
base_model: microsoft/speecht5_tts
tags:
- scottish
- tts
- glaswegian
- generated_from_trainer
datasets:
- divakaivan/glaswegian_audio
model-index:
- name: GlaswegianTTS v0.1.0
  results: []
---

Fine-tuned using [this notebook](https://colab.research.google.com/drive/1ChrneivOTcgkwdnbwg7nRAEHF2wamb7R?usp=sharing)

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# GlaswegianTTS v0.1.0

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the glaswegian_tts_v0.1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4605

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.4699        | 35.2423  | 1000 | 0.4320          |
| 0.4246        | 70.4846  | 2000 | 0.4422          |
| 0.4115        | 105.7269 | 3000 | 0.4529          |
| 0.4127        | 140.9692 | 4000 | 0.4605          |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1