File size: 5,018 Bytes
fd0c348
d9693aa
 
 
 
fd0c348
 
 
 
 
 
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076f3ed
 
d9693aa
076f3ed
fd0c348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9693aa
 
 
 
 
 
 
 
 
 
 
 
076f3ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- v000000/Qwen2.5-Lumen-14B
- qwen/Qwen2.5-14b
- arcee-ai/SuperNova-Medius
- allura-org/TQ2.5-14B-Aletheia-v1
model-index:
- name: Q2.5-Veltha-14B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 82.92
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.75
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 28.02
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.54
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.26
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.76
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B
      name: Open LLM Leaderboard
new_version: djuna/Q2.5-Veltha-14B-0.5
---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the della_linear merge method using [qwen/Qwen2.5-14b](https://huggingface.co/qwen/Qwen2.5-14b) as a base.

### Models Merged

The following models were included in the merge:
* [huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2)
* [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2)
* [v000000/Qwen2.5-Lumen-14B](https://huggingface.co/v000000/Qwen2.5-Lumen-14B)
* [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius)
* [allura-org/TQ2.5-14B-Aletheia-v1](https://huggingface.co/allura-org/TQ2.5-14B-Aletheia-v1)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
merge_method: della_linear
dtype: float32
out_dtype: bfloat16
parameters:
  epsilon: 0.04
  lambda: 1.05
  normalize: true
base_model: qwen/Qwen2.5-14b
tokenizer_source: arcee-ai/SuperNova-Medius
models:
  - model: arcee-ai/SuperNova-Medius
    parameters:
      weight: 10
      density: 1
  - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
    parameters:
      weight: 7
      density: 0.5
  - model: v000000/Qwen2.5-Lumen-14B
    parameters:
      weight: 7
      density: 0.4
  - model: allura-org/TQ2.5-14B-Aletheia-v1
    parameters:
      weight: 8
      density: 0.4
  - model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
    parameters:
      weight: 8
      density: 0.45
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/djuna__Q2.5-Veltha-14B-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |39.21|
|IFEval (0-Shot)    |82.92|
|BBH (3-Shot)       |49.75|
|MATH Lvl 5 (4-Shot)|28.02|
|GPQA (0-shot)      |14.54|
|MuSR (0-shot)      |12.26|
|MMLU-PRO (5-shot)  |47.76|