File size: 3,657 Bytes
1772cef
 
 
 
 
 
 
 
 
 
 
 
8f16412
 
 
 
 
 
bf2c61e
 
1772cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: nl
datasets:
- conll2003
widget:
- text: "George Washington ging naar Washington."
---

# Important!

Use transformers=4.30.2  and flair=0.12.2 because there is a [bug](https://github.com/flairNLP/flair/issues/3284) 

Took hander.py from [here](https://huggingface.co/philschmid/flair-ner-english-ontonotes-large)

Original [model](https://huggingface.co/flair/ner-dutch)

# Dutch NER in Flair (default model)

This is the standard 4-class NER model for Dutch that ships with [Flair](https://github.com/flairNLP/flair/).

F1-Score: **92,58** (CoNLL-03)

Predicts 4 tags:

| **tag**                        | **meaning** |
|---------------------------------|-----------|
| PER         | person name | 
| LOC         | location name | 
| ORG         | organization name | 
| MISC         | other name | 

Based on Transformer embeddings and LSTM-CRF.

---
# Demo: How to use in Flair

Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)

```python
from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/ner-dutch")

# make example sentence
sentence = Sentence("George Washington ging naar Washington")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)

```

This yields the following output:
```
Span [1,2]: "George Washington"   [− Labels: PER (0.997)]
Span [5]: "Washington"   [− Labels: LOC (0.9996)]
```

So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging naar Washington*". 


---

### Training: Script to train this model

The following Flair script was used to train this model: 

```python
from flair.data import Corpus
from flair.datasets import CONLL_03_DUTCH
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings


# 1. get the corpus
corpus: Corpus = CONLL_03_DUTCH()

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize embeddings
embeddings = TransformerWordEmbeddings('wietsedv/bert-base-dutch-cased')

# 5. initialize sequence tagger
tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type)

# 6. initialize trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/ner-dutch',
              train_with_dev=True,
              max_epochs=150)
```


---

### Cite

Please cite the following paper when using this model.

```
@inproceedings{akbik-etal-2019-flair,
    title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}",
    author = "Akbik, Alan  and
      Bergmann, Tanja  and
      Blythe, Duncan  and
      Rasul, Kashif  and
      Schweter, Stefan  and
      Vollgraf, Roland",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)",
    year = "2019",
    url = "https://www.aclweb.org/anthology/N19-4010",
    pages = "54--59",
}
```

---

### Issues?

The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).