File size: 15,612 Bytes
e70ad00 d72b2c3 e70ad00 d72b2c3 6cb7713 d72b2c3 6cb7713 3ac9f34 6cb7713 d912185 d72b2c3 e366cd5 d72b2c3 a0ce150 d72b2c3 e366cd5 dcfe0d4 6cb7713 dcfe0d4 d72b2c3 0a8807e a84b206 d72b2c3 a0ce150 d72b2c3 a0ce150 d72b2c3 e70ad00 d72b2c3 a0ce150 d72b2c3 dcfe0d4 d72b2c3 3eec6d2 e366cd5 731cb10 6cb7713 dcfe0d4 6cb7713 731cb10 d72b2c3 6cb7713 d72b2c3 6cb7713 d72b2c3 6cb7713 a0ce150 d9889a1 a0ce150 e366cd5 dcfe0d4 a0ce150 e366cd5 d72b2c3 6cb7713 dcfe0d4 6cb7713 dcfe0d4 e366cd5 dcfe0d4 d72b2c3 dcfe0d4 d9889a1 a0ce150 dcfe0d4 e366cd5 6cb7713 731cb10 a0ce150 6cb7713 e366cd5 dcfe0d4 a0ce150 dcfe0d4 3ac9f34 dcfe0d4 731cb10 dcfe0d4 3ac9f34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
from dataclasses import dataclass
import logging
import math
import typing as tp
import torch
import torch.nn.functional as F
from audiocraft.transformer import StreamingTransformer
from dataclasses import dataclass
from functools import partial
from torch import nn
from audiocraft.activations import get_activation_fn
import numpy as np
def _shift(x):
# cyclic shift of [1, 4, seq_len] slices from [bs, 4, seq_len]
print(x.shape, 'SHIFT\n= = = = = ')
for i, _slice in enumerate(x):
n = x.shape[2]
offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
print(offset)
x[i, :, :] = torch.roll(_slice, offset, dims=1)
return x
# ============================================== From LM.py
logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask
ConditionTensors = tp.Dict[str, ConditionType]
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]]
def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None):
"""LM layer initialization.
Inspired from xlformers: https://github.com/fairinternal/xlformers
Args:
method (str): Method name for init function. Valid options are:
'gaussian', 'uniform'.
input_dim (int): Input dimension of the initialized module.
init_depth (int, optional): Optional init depth value used to rescale
the standard deviation if defined.
"""
# Compute std
std = 1 / math.sqrt(input_dim)
# Rescale with depth
if init_depth is not None:
std = std / math.sqrt(2 * init_depth)
if method == 'gaussian':
return partial(
torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std
)
elif method == 'uniform':
bound = math.sqrt(3) * std # ensure the standard deviation is `std`
return partial(torch.nn.init.uniform_, a=-bound, b=bound)
else:
raise ValueError("Unsupported layer initialization method")
def init_layer(m: nn.Module,
method: str,
init_depth: tp.Optional[int] = None,
zero_bias_init: bool = False):
"""Wrapper around ``get_init_fn`` for proper initialization of LM modules.
Args:
m (nn.Module): Module to initialize.
method (str): Method name for the init function.
init_depth (int, optional): Optional init depth value used to rescale
the standard deviation if defined.
zero_bias_init (bool): Whether to initialize the bias to 0 or not.
"""
if isinstance(m, nn.Linear):
init_fn = get_init_fn(method, m.in_features, init_depth=init_depth)
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
weight = m.weight.float()
init_fn(weight)
m.weight.data[:] = weight.half()
else:
init_fn(m.weight)
if zero_bias_init and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Embedding):
init_fn = get_init_fn(method, m.embedding_dim, init_depth=None)
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
weight = m.weight.float()
init_fn(weight)
m.weight.data[:] = weight.half()
else:
init_fn(m.weight)
class ScaledEmbedding(nn.Embedding):
"""Boost learning rate for embeddings (with `scale`).
"""
def __init__(self, *args, lr=None, **kwargs):
super().__init__(*args, **kwargs)
self.lr = lr
def make_optim_group(self):
group = {"params": list(self.parameters())}
if self.lr is not None:
group["lr"] = self.lr
return group
@dataclass
class LMOutput:
# The logits are already re-aligned with the input codes
# hence no extra shift is required, e.g. when computing CE
logits: torch.Tensor # [B, K, T, card]
mask: torch.Tensor # [B, K, T]
class LMModel(nn.Module):
"""Transformer-based language model on multiple streams of codes.
Args:
pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving.
condition_provider (MusicConditioningProvider): Conditioning provider from metadata.
fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input.
n_q (int): Number of parallel streams to model.
card (int): Cardinality, vocabulary size.
dim (int): Dimension of the transformer encoder.
num_heads (int): Number of heads for the transformer encoder.
hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder.
norm (str): Normalization method.
norm_first (bool): Use pre-norm instead of post-norm.
emb_lr (float, optional): Embedding-specific learning rate.
bias_proj (bool): Use bias for output projections.
weight_init (str, optional): Method for weight initialization.
depthwise_init (str, optional): Method for depthwise weight initialization.
zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros.
cfg_dropout (float): Classifier-free guidance dropout.
cfg_coef (float): Classifier-free guidance coefficient.
attribute_dropout (dict): Attribute dropout probabilities.
two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps.
**kwargs: Additional parameters for the transformer encoder.
"""
def __init__(self,
pattern_provider,
condition_provider,
n_q: int = 8,
card: int = 1024,
dim: int = 128,
num_heads: int = 8,
hidden_scale: int = 4,
norm: str = 'layer_norm',
norm_first: bool = False,
emb_lr: tp.Optional[float] = None,
bias_proj: bool = True,
weight_init: tp.Optional[str] = None,
depthwise_init: tp.Optional[str] = None,
zero_bias_init: bool = False, cfg_dropout: float = 0,
cfg_coef: float = 1.0,
two_step_cfg: bool = False,
**kwargs):
super().__init__()
self.cfg_coef = cfg_coef
self.condition_provider = condition_provider
self.card = card # 2048 ?
self.n_draw = 1 # replicate so many times the generation of each text in batch
embed_dim = self.card + 1
self.n_q = n_q
self.dim = dim
self.pattern_provider = pattern_provider
self.two_step_cfg = two_step_cfg
self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)])
if 'activation' in kwargs:
kwargs['activation'] = get_activation_fn(kwargs['activation'])
# ========================================================================
# {
# 'dtype': torch.float16, 'device': 'cuda',
# 'num_layers': 48, 'dropout': 0.0, 'activation': 'gelu',
# 'bias_ff': False, 'bias_attn': False,
# 'past_context': None, 'causal': True,
# 'custom': False, 'memory_efficient': True,
# 'attention_as_float32': False, 'positional_embedding': 'sin', 'xpos': False,
# 'checkpointing': 'none', 'cross_attention': True, 'qk_layer_norm': False,
# 'qk_layer_norm_cross': False, 'attention_dropout': None, 'kv_repeat': 1
# }
# ==========================================================================
kwargs.pop('layer_scale') # nn.Indentity()
self.transformer = StreamingTransformer(
d_model=dim,
num_heads=num_heads,
dim_feedforward=int(hidden_scale * dim),
norm=norm,
norm_first=norm_first, **kwargs)
self.out_norm: tp.Optional[nn.Module] = None
if norm_first:
self.out_norm = nn.LayerNorm(dim, eps=1e-5)
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)])
self._init_weights(weight_init, depthwise_init, zero_bias_init)
self._fsdp: tp.Optional[nn.Module]
self.__dict__['_fsdp'] = None
def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool):
"""Initialization of the transformer module weights.
Args:
weight_init (str, optional): Weight initialization strategy. See ``get_init_fn`` for valid options.
depthwise_init (str, optional): Depthwise initialization strategy. The following options are valid:
'current' where the depth corresponds to the current layer index or 'global' where the total number
of layer is used as depth. If not set, no depthwise initialization strategy is used.
zero_bias_init (bool): Whether to initialize bias to zero or not.
"""
assert depthwise_init is None or depthwise_init in ['current', 'global']
assert depthwise_init is None or weight_init is not None, \
"If 'depthwise_init' is defined, a 'weight_init' method should be provided."
assert not zero_bias_init or weight_init is not None, \
"If 'zero_bias_init', a 'weight_init' method should be provided"
if weight_init is None:
return
for emb_layer in self.emb:
init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
for layer_idx, tr_layer in enumerate(self.transformer.layers):
depth = None
if depthwise_init == 'current':
depth = layer_idx + 1
elif depthwise_init == 'global':
depth = len(self.transformer.layers)
init_fn = partial(init_layer,
method=weight_init,
init_depth=depth,
zero_bias_init=zero_bias_init)
tr_layer.apply(init_fn)
for linear in self.linears:
init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
@property
def special_token_id(self) -> int:
return self.card
def forward(self,
sequence,
condition_tensors=None,
token_count=None):
# takes bs=3 duplicates null condition to bs=6 splits logits to cfg returns bs=3
bs, _, _ = sequence.shape # sequence [bs, n_draw,4]
input_ = sum([self.emb[k](sequence[:, k]) for k in range(self.n_q)])
out = self.transformer(torch.cat([input_, input_], 0),
cross_attention_src=condition_tensors,
token_count=token_count)
if self.out_norm:
out = self.out_norm(out)
logits = torch.stack([self.linears[k](out) for k in range(self.n_q)], dim=1)#[2*bs,4,1,2048]
logits = 3 * logits[:bs, :, :, :] - 2 * logits[bs:, :, :, :] # [3, 4, 1, 2048]
# SAMPLE TOP K
k = 250
p = torch.softmax(logits, dim=3)
top_k_value, _ = torch.topk(p, k, dim=3) # [3, 4, 1, k]
min_value_top_k = top_k_value[:, :, :, -1:]
p *= (p >= min_value_top_k).float() # zero low probs
p.div_(p.sum(dim=-1, keepdim=True)) # renormalise on non-zero probs
# BRING THE nq = 4 IN BATCH
p = p.reshape(bs * self.n_q, 2048)
out = torch.multinomial(p, # p=[bs,2048], out=[bs, num_samples]
num_samples=self.n_draw,
replacement=True) # [bs*4, self.n_draw]
return out.reshape(bs, self.n_q, self.n_draw).transpose(1,2) # [bs=3not6, self.n_draw, 4]
@torch.no_grad()
def generate(self, conditions = [],
max_gen_len=256):
tokenized = self.condition_provider.tokenize(conditions)
cfg_conditions = self.condition_provider(tokenized)
# NULL CONDITION
text_condition = cfg_conditions['description'][0]
bs, _, _ = text_condition.shape
text_condition = torch.cat(
[
text_condition,
torch.zeros_like(text_condition)
], 0)
pattern = self.pattern_provider.get_pattern(max_gen_len)
gen_codes = torch.full((bs,
self.n_q,
max_gen_len), -1, dtype=torch.long,
device=text_condition.device)
gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
_, _, audiodur = gen_sequence.shape # bs, 4, 7=audiodur
# print(gen_sequence.shape, mask.shape, 'F') # mask has no batch = [4,audio_duration]
# print(f'{mask=}')
#
# torch.Size([3, 4, 7]) torch.Size([4, 7]) F
# mask=tensor([[False, True, True, True, False, False, False],
# [False, False, True, True, True, False, False],
# [False, False, False, True, True, True, False],
# [False, False, False, False, True, True, True]], device='cuda:0')
mask = mask[None, None, :, :].repeat(bs, self.n_draw, 1, 1) # [bs, n_draw, 4, audio duration]
gen_sequence = gen_sequence[:, None, :, :].repeat(1, self.n_draw, 1, 1) # bs,n_draw,4,dur
for offset in range(1, audiodur):
# forward duplicates the query to nullcond - then cfg & returns deduplicate token
next_token = self.forward(gen_sequence[:, 0, :, offset-1:offset],
condition_tensors=text_condition,
token_count=offset-1) # [bs, 4, 1, 2048]
# MASK is not full 1---- HAS 4 x audioduration PATTERN
m = mask[:, :, :, offset]
next_token[~m] = self.special_token_id
gen_sequence[:, :, :, offset] = torch.where(
gen_sequence[:, :, :, offset] == -1, #unknown_token,
next_token,
gen_sequence[:, :, :, offset]
)
# 1. reshape n_draw as bs * n_draw
# 2. invert all short-sequences
# 3. reshape bs * n_draw -> bs, n_draw * audiodur ELONGATION
out_codes, _, _ = pattern.revert_pattern_sequence(
gen_sequence.reshape(bs * self.n_draw, 4, audiodur), # [3,8,4,7]
special_token=-1)
# print(f'{gen_sequence.shape=} {out_codes.shape=} Ha') # REVERT PATTERN REDUCES DURATION?
_, _, new_len = out_codes.shape # 4 IS PRESERVED AFTER REVERT!
out_codes = out_codes.reshape(bs, self.n_draw, 4, new_len)
out_codes = out_codes.transpose(1, 2).reshape(bs, 4, self.n_draw * new_len)
print(out_codes.shape, 'o')
for _ in range(7):
out_codes = _shift(out_codes)
# Clear Transformer k/v history (Different history is kept by 48x selfattn)
for lay in self.transformer.layers:
lay.self_attn.k_history = None
lay.self_attn.v_history = None
return out_codes
|