File size: 15,612 Bytes
e70ad00
d72b2c3
 
 
 
 
e70ad00
d72b2c3
 
 
 
6cb7713
d72b2c3
6cb7713
3ac9f34
 
 
 
 
 
 
6cb7713
d912185
 
d72b2c3
e366cd5
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ce150
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e366cd5
 
 
dcfe0d4
 
 
 
 
6cb7713
dcfe0d4
 
 
 
 
 
 
 
d72b2c3
 
 
 
0a8807e
a84b206
d72b2c3
 
 
 
 
 
 
 
a0ce150
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
a0ce150
 
 
 
 
d72b2c3
 
e70ad00
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ce150
 
 
 
d72b2c3
 
 
 
 
 
 
 
dcfe0d4
 
d72b2c3
3eec6d2
e366cd5
 
731cb10
6cb7713
 
 
dcfe0d4
 
6cb7713
 
731cb10
d72b2c3
 
 
6cb7713
 
 
 
 
 
 
 
 
 
 
d72b2c3
6cb7713
 
 
 
 
 
 
d72b2c3
 
6cb7713
a0ce150
d9889a1
a0ce150
e366cd5
dcfe0d4
a0ce150
e366cd5
 
d72b2c3
6cb7713
 
 
 
 
 
 
 
 
 
 
 
 
dcfe0d4
 
 
6cb7713
 
 
dcfe0d4
 
e366cd5
dcfe0d4
 
 
 
 
 
 
 
d72b2c3
dcfe0d4
 
d9889a1
a0ce150
 
dcfe0d4
e366cd5
6cb7713
 
 
 
731cb10
a0ce150
6cb7713
e366cd5
dcfe0d4
 
 
 
 
 
 
 
a0ce150
 
dcfe0d4
 
 
 
 
 
 
 
 
 
 
3ac9f34
 
dcfe0d4
 
731cb10
 
 
dcfe0d4
3ac9f34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from dataclasses import dataclass
import logging
import math
import typing as tp
import torch
import torch.nn.functional as F
from audiocraft.transformer import StreamingTransformer
from dataclasses import dataclass
from functools import partial
from torch import nn
from audiocraft.activations import get_activation_fn
import numpy as np

def _shift(x):
    # cyclic shift of [1, 4, seq_len] slices from [bs, 4, seq_len]
    print(x.shape, 'SHIFT\n= = = = = ')
    for i, _slice in enumerate(x):
        n = x.shape[2]
        offset = np.random.randint(.24 * n, max(1, .74 * n))  # high should be above >= 0 TBD
        print(offset)
        x[i, :, :] = torch.roll(_slice, offset, dims=1)
    return x



# ============================================== From LM.py


logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str]  # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor]  # condition, mask

ConditionTensors = tp.Dict[str, ConditionType]
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]]


def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None):
    """LM layer initialization.
    Inspired from xlformers: https://github.com/fairinternal/xlformers

    Args:
        method (str): Method name for init function. Valid options are:
            'gaussian', 'uniform'.
        input_dim (int): Input dimension of the initialized module.
        init_depth (int, optional): Optional init depth value used to rescale
            the standard deviation if defined.
    """
    # Compute std
    std = 1 / math.sqrt(input_dim)
    # Rescale with depth
    if init_depth is not None:
        std = std / math.sqrt(2 * init_depth)

    if method == 'gaussian':
        return partial(
            torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std
        )
    elif method == 'uniform':
        bound = math.sqrt(3) * std  # ensure the standard deviation is `std`
        return partial(torch.nn.init.uniform_, a=-bound, b=bound)
    else:
        raise ValueError("Unsupported layer initialization method")


def init_layer(m: nn.Module,
               method: str,
               init_depth: tp.Optional[int] = None,
               zero_bias_init: bool = False):
    """Wrapper around ``get_init_fn`` for proper initialization of LM modules.

    Args:
        m (nn.Module): Module to initialize.
        method (str): Method name for the init function.
        init_depth (int, optional): Optional init depth value used to rescale
            the standard deviation if defined.
        zero_bias_init (bool): Whether to initialize the bias to 0 or not.
    """
    if isinstance(m, nn.Linear):
        init_fn = get_init_fn(method, m.in_features, init_depth=init_depth)
        if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
            weight = m.weight.float()
            init_fn(weight)
            m.weight.data[:] = weight.half()
        else:
            init_fn(m.weight)
        if zero_bias_init and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Embedding):
        init_fn = get_init_fn(method, m.embedding_dim, init_depth=None)
        if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
            weight = m.weight.float()
            init_fn(weight)
            m.weight.data[:] = weight.half()
        else:
            init_fn(m.weight)


class ScaledEmbedding(nn.Embedding):
    """Boost learning rate for embeddings (with `scale`).
    """
    def __init__(self, *args, lr=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr = lr

    def make_optim_group(self):
        group = {"params": list(self.parameters())}
        if self.lr is not None:
            group["lr"] = self.lr
        return group


@dataclass
class LMOutput:
    # The logits are already re-aligned with the input codes
    # hence no extra shift is required, e.g. when computing CE
    logits: torch.Tensor  # [B, K, T, card]
    mask: torch.Tensor  # [B, K, T]


class LMModel(nn.Module):
    """Transformer-based language model on multiple streams of codes.

    Args:
        pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving.
        condition_provider (MusicConditioningProvider): Conditioning provider from metadata.
        fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input.
        n_q (int): Number of parallel streams to model.
        card (int): Cardinality, vocabulary size.
        dim (int): Dimension of the transformer encoder.
        num_heads (int): Number of heads for the transformer encoder.
        hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder.
        norm (str): Normalization method.
        norm_first (bool): Use pre-norm instead of post-norm.
        emb_lr (float, optional): Embedding-specific learning rate.
        bias_proj (bool): Use bias for output projections.
        weight_init (str, optional): Method for weight initialization.
        depthwise_init (str, optional): Method for depthwise weight initialization.
        zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros.
        cfg_dropout (float): Classifier-free guidance dropout.
        cfg_coef (float): Classifier-free guidance coefficient.
        attribute_dropout (dict): Attribute dropout probabilities.
        two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps.
        **kwargs: Additional parameters for the transformer encoder.
    """
    def __init__(self,
                 pattern_provider, 
                 condition_provider,
                 n_q: int = 8, 
                 card: int = 1024, 
                 dim: int = 128,
                 num_heads: int = 8,
                 hidden_scale: int = 4, 
                 norm: str = 'layer_norm',
                 norm_first: bool = False,
                 emb_lr: tp.Optional[float] = None, 
                 bias_proj: bool = True,
                 weight_init: tp.Optional[str] = None, 
                 depthwise_init: tp.Optional[str] = None,
                 zero_bias_init: bool = False, cfg_dropout: float = 0, 
                 cfg_coef: float = 1.0,
                 two_step_cfg: bool = False,
                 **kwargs):
        super().__init__()
        self.cfg_coef = cfg_coef
        self.condition_provider = condition_provider
        self.card = card  # 2048 ?
        self.n_draw = 1  # replicate so many times the generation of each text in batch
        embed_dim = self.card + 1
        self.n_q = n_q
        self.dim = dim
        self.pattern_provider = pattern_provider
        self.two_step_cfg = two_step_cfg
        self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)])
        if 'activation' in kwargs:
            kwargs['activation'] = get_activation_fn(kwargs['activation'])
        # ========================================================================
        #  {
        #   'dtype': torch.float16, 'device': 'cuda',
        #   'num_layers': 48, 'dropout': 0.0, 'activation': 'gelu', 
        #   'bias_ff': False, 'bias_attn': False,
        #   'past_context': None, 'causal': True, 
        #   'custom': False, 'memory_efficient': True,
        #   'attention_as_float32': False, 'positional_embedding': 'sin', 'xpos': False, 
        #   'checkpointing': 'none', 'cross_attention': True, 'qk_layer_norm': False,
        #   'qk_layer_norm_cross': False, 'attention_dropout': None, 'kv_repeat': 1
        #   }
        # ==========================================================================
        kwargs.pop('layer_scale')  # nn.Indentity()
        
        self.transformer = StreamingTransformer(
            d_model=dim, 
            num_heads=num_heads, 
            dim_feedforward=int(hidden_scale * dim),
            norm=norm, 
            norm_first=norm_first, **kwargs)
        self.out_norm: tp.Optional[nn.Module] = None
        if norm_first:
            self.out_norm = nn.LayerNorm(dim, eps=1e-5)
        self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)])
        self._init_weights(weight_init, depthwise_init, zero_bias_init)
        self._fsdp: tp.Optional[nn.Module]
        self.__dict__['_fsdp'] = None

    def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool):
        """Initialization of the transformer module weights.

        Args:
            weight_init (str, optional): Weight initialization strategy. See ``get_init_fn`` for valid options.
            depthwise_init (str, optional): Depthwise initialization strategy. The following options are valid:
                'current' where the depth corresponds to the current layer index or 'global' where the total number
                of layer is used as depth. If not set, no depthwise initialization strategy is used.
            zero_bias_init (bool): Whether to initialize bias to zero or not.
        """
        assert depthwise_init is None or depthwise_init in ['current', 'global']
        assert depthwise_init is None or weight_init is not None, \
            "If 'depthwise_init' is defined, a 'weight_init' method should be provided."
        assert not zero_bias_init or weight_init is not None, \
            "If 'zero_bias_init', a 'weight_init' method should be provided"

        if weight_init is None:
            return

        for emb_layer in self.emb:
            init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)

        for layer_idx, tr_layer in enumerate(self.transformer.layers):
            depth = None
            if depthwise_init == 'current':
                depth = layer_idx + 1
            elif depthwise_init == 'global':
                depth = len(self.transformer.layers)
            init_fn = partial(init_layer,
                              method=weight_init,
                              init_depth=depth, 
                              zero_bias_init=zero_bias_init)
            tr_layer.apply(init_fn)

        for linear in self.linears:
            init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)

    @property
    def special_token_id(self) -> int:
        return self.card
    
        

    def forward(self,
                sequence,
                condition_tensors=None,
                token_count=None):
        # takes bs=3 duplicates null condition to bs=6 splits logits to cfg returns bs=3 

        bs, _, _ = sequence.shape         # sequence [bs, n_draw,4]

        input_ = sum([self.emb[k](sequence[:, k]) for k in range(self.n_q)])
        out = self.transformer(torch.cat([input_, input_], 0),
                               cross_attention_src=condition_tensors,
                               token_count=token_count)
        if self.out_norm:
            out = self.out_norm(out)

        logits = torch.stack([self.linears[k](out) for k in range(self.n_q)], dim=1)#[2*bs,4,1,2048]
        
        logits = 3 * logits[:bs, :, :, :] - 2 * logits[bs:, :, :, :]  # [3, 4, 1, 2048]
        
        # SAMPLE TOP K
        k = 250
        p = torch.softmax(logits, dim=3)
        top_k_value, _ = torch.topk(p, k, dim=3)  # [3, 4, 1, k]
        min_value_top_k = top_k_value[:, :, :, -1:] 
        p *= (p >= min_value_top_k).float()   # zero low probs
        p.div_(p.sum(dim=-1, keepdim=True))   # renormalise on non-zero probs

        
        # BRING THE nq = 4 IN BATCH
        p = p.reshape(bs * self.n_q, 2048)
        out = torch.multinomial(p,  # p=[bs,2048], out=[bs, num_samples]
                                num_samples=self.n_draw,
                                replacement=True)  # [bs*4, self.n_draw]
        return out.reshape(bs, self.n_q, self.n_draw).transpose(1,2)  # [bs=3not6, self.n_draw, 4]

    @torch.no_grad()
    def generate(self, conditions = [],
                 max_gen_len=256):
        
        
        tokenized = self.condition_provider.tokenize(conditions)
        

        cfg_conditions = self.condition_provider(tokenized)
        

        
        # NULL CONDITION
        text_condition = cfg_conditions['description'][0]
        bs, _, _ = text_condition.shape
        text_condition = torch.cat(
            [
                text_condition,
                torch.zeros_like(text_condition)
            ], 0)
        
        

        
        pattern = self.pattern_provider.get_pattern(max_gen_len)
        gen_codes = torch.full((bs, 
                                self.n_q, 
                                max_gen_len), -1, dtype=torch.long, 
                                device=text_condition.device)

        gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
        _, _, audiodur = gen_sequence.shape  # bs, 4, 7=audiodur
        
        # print(gen_sequence.shape, mask.shape, 'F')  # mask has no batch = [4,audio_duration]
        # print(f'{mask=}')
        # 
        # torch.Size([3, 4, 7]) torch.Size([4, 7]) F
        # mask=tensor([[False,  True,  True,  True, False, False, False],
        #              [False, False,  True,  True,  True, False, False],
        #              [False, False, False,  True,  True,  True, False],
        #              [False, False, False, False,  True,  True,  True]], device='cuda:0')

        mask = mask[None, None, :, :].repeat(bs, self.n_draw, 1, 1)  # [bs, n_draw, 4, audio duration]
        gen_sequence = gen_sequence[:, None, :, :].repeat(1, self.n_draw, 1, 1)  # bs,n_draw,4,dur
        

        
        for offset in range(1, audiodur):
            
            # forward duplicates the query to nullcond - then cfg & returns deduplicate token
            next_token = self.forward(gen_sequence[:, 0, :, offset-1:offset],
                                      condition_tensors=text_condition,
                                      token_count=offset-1)  # [bs, 4, 1, 2048]
            


            
            # MASK is not full 1---- HAS 4 x audioduration PATTERN
            m = mask[:, :, :, offset]
            next_token[~m] = self.special_token_id
            gen_sequence[:, :, :, offset] = torch.where(
                gen_sequence[:, :, :, offset] == -1, #unknown_token,
                next_token,
                gen_sequence[:, :, :, offset]
            )
            

        # 1. reshape n_draw as bs * n_draw
        # 2. invert all short-sequences
        # 3. reshape bs * n_draw -> bs, n_draw * audiodur ELONGATION 
        out_codes, _, _ = pattern.revert_pattern_sequence(
            gen_sequence.reshape(bs * self.n_draw, 4, audiodur),  # [3,8,4,7]
            special_token=-1)
        # print(f'{gen_sequence.shape=} {out_codes.shape=} Ha')  # REVERT PATTERN REDUCES DURATION?
        _, _, new_len = out_codes.shape                        # 4 IS PRESERVED AFTER REVERT!
        out_codes = out_codes.reshape(bs, self.n_draw, 4, new_len)
        out_codes = out_codes.transpose(1, 2).reshape(bs, 4, self.n_draw * new_len) 
        print(out_codes.shape, 'o')
        for _ in range(7):
            out_codes = _shift(out_codes)
        
        # Clear Transformer k/v history (Different history is kept by 48x selfattn)
        for lay in self.transformer.layers:
             lay.self_attn.k_history = None
             lay.self_attn.v_history = None

        return out_codes