File size: 7,778 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8807e
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70ad00
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e2a3d
 
d72b2c3
d8e2a3d
d72b2c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import typing as tp
import numpy as np
import torch.nn as nn
from .conv import StreamableConv1d, StreamableConvTranspose1d



class StreamableLSTM(nn.Module):
    """LSTM without worrying about the hidden state, nor the layout of the data.
    Expects input as convolutional layout.
    """
    def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
        super().__init__()
        self.skip = skip
        self.lstm = nn.LSTM(dimension, dimension, num_layers)

    def forward(self, x):
        print('LSTM called 1c')
        x = x.permute(2, 0, 1)
        y, _ = self.lstm(x)
        if self.skip:
            y = y + x
        y = y.permute(1, 2, 0)
        return y



class SEANetResnetBlock(nn.Module):
    """Residual block from SEANet model.

    Args:
        dim (int): Dimension of the input/output.
        kernel_sizes (list): List of kernel sizes for the convolutions.
        dilations (list): List of dilations for the convolutions.
        activation (str): Activation function.
        activation_params (dict): Parameters to provide to the activation function.
        norm (str): Normalization method.
        norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution.
        causal (bool): Whether to use fully causal convolution.
        pad_mode (str): Padding mode for the convolutions.
        compress (int): Reduced dimensionality in residual branches (from Demucs v3).
        true_skip (bool): Whether to use true skip connection or a simple
            (streamable) convolution as the skip connection.
    """
    def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1],
                 activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
                 norm: str = 'none', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False,
                 pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True):
        super().__init__()
        assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations'
        act = getattr(nn, activation)
        hidden = dim // compress
        block = []
        for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
            in_chs = dim if i == 0 else hidden
            out_chs = dim if i == len(kernel_sizes) - 1 else hidden
            block += [
                act(**activation_params),
                StreamableConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation,
                                 norm=norm, norm_kwargs=norm_params,
                                 causal=causal, pad_mode=pad_mode),
            ]
        self.block = nn.Sequential(*block)
        self.shortcut: nn.Module
        if true_skip:
            self.shortcut = nn.Identity()
        else:
            self.shortcut = StreamableConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params,
                                             causal=causal, pad_mode=pad_mode)

    def forward(self, x):
        return self.shortcut(x) + self.block(x)





class SEANetDecoder(nn.Module):

    def __init__(self, channels: int = 1, 
                 dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 3,
                 ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', 
                 activation_params: dict = {'alpha': 1.0},
                 final_activation: tp.Optional[str] = None, 
                 final_activation_params: tp.Optional[dict] = None,
                 norm: str = 'none', norm_params: tp.Dict[str, tp.Any] = {}, 
                 kernel_size: int = 7,
                 last_kernel_size: int = 7, residual_kernel_size: int = 3, 
                 dilation_base: int = 2, causal: bool = False,
                 pad_mode: str = 'reflect', true_skip: bool = True, 
                 compress: int = 2, lstm: int = 0,
                 disable_norm_outer_blocks: int = 0, 
                 trim_right_ratio: float = 1.0):
        super().__init__()
        self.dimension = dimension
        self.channels = channels
        self.n_filters = n_filters
        self.ratios = ratios
        del ratios
        self.n_residual_layers = n_residual_layers
        self.hop_length = np.prod(self.ratios)
        self.n_blocks = len(self.ratios) + 2  # first and last conv + residual blocks
        self.disable_norm_outer_blocks = disable_norm_outer_blocks
        assert self.disable_norm_outer_blocks >= 0 and self.disable_norm_outer_blocks <= self.n_blocks, \
            "Number of blocks for which to disable norm is invalid." \
            "It should be lower or equal to the actual number of blocks in the network and greater or equal to 0."

        act = getattr(nn, activation)
        mult = int(2 ** len(self.ratios))
        model: tp.List[nn.Module] = [
            StreamableConv1d(dimension, mult * n_filters, kernel_size,
                             norm='none' if self.disable_norm_outer_blocks == self.n_blocks else norm,
                             norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode)
        ]

        if lstm:
            print('\n\n\n\nLSTM IN SEANET\n\n\n\n')
            model += [StreamableLSTM(mult * n_filters, num_layers=lstm)]

        # Upsample to raw audio scale
        for i, ratio in enumerate(self.ratios):
            block_norm = 'none' if self.disable_norm_outer_blocks >= self.n_blocks - (i + 1) else norm
            # Add upsampling layers
            model += [
                act(**activation_params),
                StreamableConvTranspose1d(mult * n_filters, mult * n_filters // 2,
                                          kernel_size=ratio * 2, stride=ratio,
                                          norm=block_norm, norm_kwargs=norm_params,
                                          causal=causal, trim_right_ratio=trim_right_ratio),
            ]
            # Add residual layers
            for j in range(n_residual_layers):
                model += [
                    SEANetResnetBlock(mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1],
                                      dilations=[dilation_base ** j, 1],
                                      activation=activation, activation_params=activation_params,
                                      norm=block_norm, norm_params=norm_params, causal=causal,
                                      pad_mode=pad_mode, compress=compress, true_skip=true_skip)]

            mult //= 2

        # Add final layers
        model += [
            act(**activation_params),
            StreamableConv1d(n_filters, channels, last_kernel_size,
                             norm='none' if self.disable_norm_outer_blocks >= 1 else norm,
                             norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode)
        ]
        # Add optional final activation to decoder (eg. tanh)
        if final_activation is not None:
            final_act = getattr(nn, final_activation)
            final_activation_params = final_activation_params or {}
            model += [
                final_act(**final_activation_params)
            ]
        self.model = nn.Sequential(*model)

    def forward(self, z):
        print(f'\n   Enter seanet with shape {z.shape}\n')  # arrives here with (1,128,35)
        # how can this convnet care for the value that is in z so it crashes?
        y = self.model(z)
        print(f'\n   Exit seanet with shape {y.shape}\n')  # arrives here with (1,128,35)
        return y