File size: 20,706 Bytes
d72b2c3
 
 
 
 
5b7599e
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
3ac9f34
0572d9a
560f712
3ac9f34
a84b206
3ac9f34
 
0572d9a
d72b2c3
9bcbe02
 
d2ffdd6
d72b2c3
 
 
 
 
3ac9f34
 
5b7599e
 
3ac9f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
d2ffdd6
 
 
 
 
 
560f712
3ac9f34
560f712
d2ffdd6
3ac9f34
a84b206
3ac9f34
560f712
a84b206
 
3ac9f34
4b59bb9
 
 
 
3ac9f34
 
 
a84b206
3ac9f34
 
4b59bb9
 
a84b206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac9f34
a84b206
 
 
 
 
d2ffdd6
 
d72b2c3
 
 
 
 
560f712
38f0a43
d72b2c3
 
 
 
 
 
560f712
d72b2c3
d2ffdd6
d72b2c3
38f0a43
 
d72b2c3
 
 
 
 
 
 
 
 
 
5b7599e
38f0a43
5b7599e
d72b2c3
5b7599e
 
 
 
 
 
 
 
 
d72b2c3
5b7599e
 
560f712
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b7599e
d72b2c3
 
 
38f0a43
5b7599e
 
 
 
38f0a43
 
 
560f712
966f861
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b7599e
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f0a43
d72b2c3
 
 
3ac9f34
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac9f34
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac9f34
 
 
 
 
 
 
d72b2c3
3ac9f34
 
d72b2c3
 
3ac9f34
d72b2c3
 
 
3ac9f34
 
 
d72b2c3
 
 
3ac9f34
 
 
 
d72b2c3
 
3ac9f34
d72b2c3
3ac9f34
 
 
d72b2c3
3ac9f34
 
 
 
 
 
d72b2c3
 
3ac9f34
d72b2c3
 
 
3ac9f34
d72b2c3
3ac9f34
d72b2c3
3ac9f34
d72b2c3
3ac9f34
 
 
 
d72b2c3
 
3ac9f34
d72b2c3
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
560f712
38f0a43
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
560f712
38f0a43
d72b2c3
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
560f712
38f0a43
d72b2c3
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
966f861
 
560f712
38f0a43
0572d9a
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
966f861
 
 
 
 
0572d9a
966f861
ceb19de
d72b2c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import audresample
from Utils.text_utils import split_into_sentences
import msinference
import re
import srt
import subprocess
import cv2
import markdown
import json
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from moviepy.editor import *
from audiocraft.builders import AudioGen
CACHE_DIR = 'flask_cache/'
NUM_SOUND_GENERATIONS = 1  # batch size to generate same text (same soundscape for long video)

sound_generator = AudioGen(duration=4.74, device='cuda:0').to('cuda:0').eval()


Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)

import nltk
nltk.download('punkt')

# SSH AGENT
#   eval $(ssh-agent -s)
#   ssh-add ~/.ssh/id_ed25519_github2024
#
#   git remote set-url origin [email protected]:audeering/shift
# ==

def _shorten(filename):
    return filename.replace("/","")[-6:]

def _resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    '''https://github.com/PyImageSearch/imutils/blob/master/imutils/convenience.py'''
    # initialize the dimensions of the image to be resized and
    # grab the image size
    dim = None
    (h, w) = image.shape[:2]

    # if both the width and height are None, then return the
    # original image
    if width is None and height is None:
        return image

    # check to see if the width is None
    if width is None:
        # calculate the ratio of the height and construct the
        # dimensions
        r = height / float(h)
        dim = (int(w * r), height)

    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))

    # resize the image
    resized = cv2.resize(image, dim, interpolation=inter)

    # return the resized image
    return resized



def _shift(x):
    n = x.shape[0]
    i = np.random.randint(.24 * n, max(1, .74 * n))  # high should be above >= 0
    x = np.roll(x, i)
    # we can add the one or fade it and then amplify
    # the audio is so short 6s that is difficult to not hear the shift somewhere
    # Just concatenate - raw - and then shift - the longconcat audio - many times may fix it
    # fade_in = 1 - .5 * np.tanh(-4*(np.linspace(-10, 10, n) - 9.4))  +  .5 * np.tanh(4*(np.linspace(-10, 10, n) + 9.4))
    return x  #* fade_in   # silence this

def overlay(x, soundscape=None):

    if soundscape is not None:
        
        # SOUNDS
        
        background = sound_generator.generate(
                                        [soundscape] * NUM_SOUND_GENERATIONS
                                        ).reshape(-1).detach().cpu().numpy() # bs, 11400 @.74s
        # sound_generator._flush()  # ALREADY done in lm.generate() THE Encodec does not SEEM TO HAVE TRANSFORMERS thys no kvclean up kv cache from previous soundscape
        # upsample 16 kHz AudioGen to 24kHZ StyleTTS
        
        print('Resampling')
        
        
        background = audresample.resample(
            background,
            original_rate=16000, # sound_generator.sample_rate,
            target_rate=24000)[0, :-25000]  # discard last samples as they have the splash sound / polarity change;
        
        # background /= np.abs(background).max() + 1e-7  Apply in sound_generator()
        
        
        
        
        k = background.shape[0]
        
        
        

        
        
        
        
        hop = int(.7 * k)  # only overlap 10%
        n_repeat = len(x) // hop
        total = np.zeros( hop * (n_repeat + 2))  # add some extra pad space for last frame to fit
        
        m = np.ones(k)
        overlap = k - hop
        m[hop:] = np.linspace(1, 0, overlap)  # tril mask for avg sound in the interpolated hop
        # m[:overlap] = np.linspace(0, 1, overlap)

        for j in range(n_repeat):
            # total[j*k + hop:(j+1)*k + hop] += background
            # total[j*k + hop:(j+1)*k + hop] = total[j*k + hop:(j+1)*k + hop] + m *background  # the total is already smoothly falling due to the previous mask. Is only the new added signal that needs to rise smoothl
            # total[j * (k+hop):(j+1) * k + j*hop] =background
            total[j*hop:j*hop + k] += m * background # the total is already smoothly falling due to the previous mask. Is only the new added signal that needs to rise smoothl
        # total = total.clip(-1, 1)  # if too many signals were added on top of each other
        # print(total[40000:70000].tolist())
        print(np.logical_and(total > .1, total < .9).sum(), total.shape, 'ev')
        
        # background = np.concatenate(n_repeat * [background])
        
        # background = _shift(background)
        # print(f'\n====SOUND BACKGROUND SHAPE\n{background.shape=}',
        #       f'{np.abs(background.max())=}\n{x.shape=}')
        total /= np.abs(total).max() + 1e-7  # amplify speech to full [-1,1]
        x = .4 * x + .6 * total[:len(x)]
        
    else:
        print('sound_background = None')
    return x

def tts_multi_sentence(precomputed_style_vector=None,
                       text=None,
                       voice=None,
                       soundscape=None,
                       speed=None):
    '''create 24kHZ np.array with tts

       precomputed_style_vector :   required if en_US or en_UK in voice, so
                                    to perform affective TTS.
       text  : string
       voice : string or None (falls to styleTTS)
       soundscape : 'A castle in far away lands' -> if passed will generate background sound soundscape
       '''
    
        
    # StyleTTS2 - English
    
    if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
        assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
        x = []
        for _sentence in text:
            x.append(msinference.inference(_sentence,
                        precomputed_style_vector,
                                    alpha=0.3,
                                    beta=0.7,
                                    diffusion_steps=7,
                                    embedding_scale=1))
        x = np.concatenate(x)
                    
    # Fallback - MMS TTS - Non-English
    
    else:
        
        # dont split foreign sentences: Avoids re-load of VITS & random speaker change issue
        x = msinference.foreign(text=text,
                                lang=voice,  # voice = 'romanian', 'serbian' 'hungarian'
                                speed=speed)  # normalisation externally
        
        
    # volume
    
    x /= np.abs(x).max() + 1e-7  # amplify speech to full [-1,1]        
        
    return overlay(x, soundscape=soundscape)
    



# voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)

app = Flask(__name__)
cors = CORS(app)


@app.route("/")
def index():
    with open('README.md', 'r') as f:
        return markdown.markdown(f.read())


@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
    # https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
    #                      object-into-a-representation-suitable-for-mongodb
    r = request.form.to_dict(flat=False)
    
    
    # Physically Save Client Files
    for filename, obj in request.files.items():
        obj.save(f'{CACHE_DIR}{_shorten(filename)}')
        
    print('Saved all files on Server Side\n\n') 

    args = SimpleNamespace(
        text      = None if r.get('text')  is None else CACHE_DIR + _shorten(r.get('text' )[0]),  # crop last letters from original filename & use as tmp
        video     = None if r.get('video') is None else CACHE_DIR + _shorten(r.get('video')[0]),
        image     = None if r.get('image') is None else CACHE_DIR + _shorten(r.get('image')[0]),
        native    = None if r.get('native') is None else CACHE_DIR + _shorten(r.get('native')[0]),
        affective =       r.get('affective')[0],
        voice     =       r.get('voice')[0],
        speed     = float(r.get('speed')[0]),  # For Non-English MMS TTS
        soundscape=r.get('soundscape')[0] if r.get('soundscape') is not None else None,
                )
    # print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
    

    print(args, 'ENTER Script')
    do_video_dub = True if args.text.endswith('.srt') else False

    SILENT_VIDEO = '_silent_video.mp4'
    AUDIO_TRACK = '_audio_track.wav'

    if do_video_dub:
        print('==\nFound .srt : {args.txt}, thus Video should be given as well\n\n')
        with open(args.text, "r") as f:
            s = f.read()
        text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
        assert args.video is not None
        native_audio_file = '_tmp.wav'
        subprocess.call(
            ["ffmpeg",
                "-y",  # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
                "-i",
                args.video,
                "-f",
                "mp3",
                "-ar",
                "24000",  # "22050 for mimic3",
                "-vn",
                native_audio_file])
        x_native, _ = soundfile.read(native_audio_file)  # reads mp3
        x_native = x_native[:, 0]  # stereo
        # ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
    else:
        with open(args.text, 'r') as f:
            t = ''.join(f)
        t = re.sub(' +', ' ', t)  # delete spaces
        text = split_into_sentences(t)  # split to short sentences (~100 phonemes max for OOM)
        
    # ====STYLE VECTOR====

    precomputed_style_vector = None
    if args.native:  # Voice Cloning
        try:
            precomputed_style_vector = msinference.compute_style(args.native)
        except soundfile.LibsndfileError:  # Fallback - internal voice
            print('\n  Could not voice clone audio:', args.native, 'fallback to video or Internal TTS voice.\n')
        if do_video_dub:  # Clone voice via Video
            native_audio_file = args.video.replace('.', '').replace('/', '')
            native_audio_file += '__native_audio_track.wav'
            soundfile.write('tgt_spk.wav',
                np.concatenate([
                    x_native[:int(4 * 24000)]], 0).astype(np.float32), 24000)  # 27400?
            precomputed_style_vector = msinference.compute_style('tgt_spk.wav')

    # NOTE: style vector may be None

    if precomputed_style_vector is None:
        if 'en_US' in args.voice or 'en_UK' in args.voice:
            _dir = '/' if args.affective else '_v2/'
            precomputed_style_vector = msinference.compute_style(
                'assets/wavs/style_vector' + _dir + args.voice.replace(
                    '/', '_').replace(
                    '#', '_').replace(
                    'cmu-arctic', 'cmu_arctic').replace(
                    '_low', '') + '.wav')
    # print('\n  STYLE VECTOR \n', precomputed_style_vector.shape)   # can be NoNe for foreign lang TTS
    # ====SILENT VIDEO====

    if args.video is not None:
        # banner - precomput @ 1920 pixels
        frame_tts = np.zeros((104, 1920, 3), dtype=np.uint8)
        font                   = cv2.FONT_HERSHEY_SIMPLEX
        bottomLeftCornerOfText = (240, 74)  # w,h
        fontScale              = 2
        fontColor              = (255, 255, 255)
        thickness              = 4
        lineType               = 2
        cv2.putText(frame_tts, 'TTS',
            bottomLeftCornerOfText,
            font,
            fontScale,
            fontColor,
            thickness,
            lineType)
        #     cv2.imshow('i', frame_tts); cv2.waitKey(); cv2.destroyAllWindows()
        # ====================================== NATIVE VOICE
        frame_orig = np.zeros((104, 1920, 3), dtype=np.uint8)
        font                   = cv2.FONT_HERSHEY_SIMPLEX
        bottomLeftCornerOfText = (101, 74)  # w,h
        fontScale              = 2
        fontColor              = (255, 255, 255)
        thickness              = 4
        lineType               = 1000
        cv2.putText(frame_orig, 'ORIGINAL VOICE',
            bottomLeftCornerOfText,
            font,
            fontScale,
            fontColor,
            thickness,
            lineType)
        
        print(f'\n______________________________\n'
              f'Gen Banners for TTS/Native Title {frame_tts.shape=} {frame_orig.shape=}'
              f'\n______________________________\n')
        # ====SILENT VIDEO EXTRACT====
        # DONLOAD SRT from youtube
        #
        #     yt-dlp --write-sub --sub-lang en --convert-subs "srt" https://www.youtube.com/watch?v=F1Ib7TAu7eg&list=PL4x2B6LSwFewdDvRnUTpBM7jkmpwouhPv&index=2
        #
        #
        # .mkv ->.mp4 moviepy loads only .mp4
        #
        #     ffmpeg -y -i Distaff\ \[qVonBgRXcWU\].mkv -c copy -c:a aac Distaff_qVonBgRXcWU.mp4
        #           video_file, srt_file = ['assets/Head_of_fortuna.mp4',
        #                         'assets/head_of_fortuna_en.srt']
        #
        video_file = args.video
        vf = VideoFileClip(video_file)
        
        # GET 1st FRAME to OBTAIN frame RESOLUTION
        h, w, _ = vf.get_frame(0).shape
        frame_tts = _resize(frame_tts, width=w)
        frame_orig = _resize(frame_orig, width=w)
        h, w, _ = frame_orig.shape
        
        try:
            
            # inpaint banner to say if native voice
            num = x_native.shape[0]
            is_tts = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, num) + 9.4))  # fade heaviside
            
            def inpaint_banner(get_frame, t):
                '''blend banner - (now plays) tts or native voic
                '''
                
                im = np.copy(get_frame(t))  # pic
                

                ix = int(t * 24000)

                if is_tts[ix] > .5:     # mask == 1 => tts / mask == 0 -> native
                    frame = frame_tts   # rename frame to rsz_frame_... because if frame_tts is mod
                                        # then is considered a "local variable" thus the "outer var"
                                        # is not observed by python raising referenced before assign
                else:
                    frame = frame_orig
                
                # im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
                
                

                offset_h = 24
                
                
                print(f'  > inpaint_banner() HAS NATIVE:  {frame.shape=} {im.shape=}\n\n\n\n')
                
                
                
                im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h + offset_h, :w, :] 
                                                    + .6 * frame).astype(np.uint8)
                
                # im2 = np.concatenate([im, frame_tts], 0)
                # cv2.imshow('t', im2); cv2.waitKey(); cv2.destroyAllWindows()
                return im  # np.concatenate([im, frane_ttts], 0)
            
        except UnboundLocalError:  # args.native == False
            
            def inpaint_banner(get_frame, t):
                
                im = np.copy(get_frame(t))
                
                h, w, _ = frame_tts.shape      # frame = banner
                if w != im.shape[1]:        # rsz banners to fit video w
                    local_frame = _resize(frame_tts, width=im.shape[1])
                offset_h = 24
                im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h+offset_h, :w, :] 
                                                    + .6 * local_frame).astype(np.uint8)
                return im
        vf = vf.fl(inpaint_banner)
        vf.write_videofile(SILENT_VIDEO)

        # ==== TTS .srt ====

        if do_video_dub:
            OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
            subtitles = text
            MAX_LEN = int(subtitles[-1][2] + 17) * 24000  
            # 17 extra seconds fail-safe for long-last-segment
            print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
            pieces = []
            for k, (_text_, orig_start, orig_end) in enumerate(subtitles):

                # PAUSES ?????????????????????????


                pieces.append(tts_multi_sentence(text=[_text_],
                                                 precomputed_style_vector=precomputed_style_vector,
                                                 voice=args.voice,
                                                 soundscape=args.soundscape,
                                                 speed=args.speed)
                              )
            total = np.concatenate(pieces, 0)
            # x = audresample.resample(x.astype(np.float32), 24000, 22050)  # reshapes (64,) -> (1,64)
            # PAD SHORTEST of  TTS / NATIVE
            if len(x_native) > len(total):
                total = np.pad(total, (0, max(0, x_native.shape[0] - total.shape[0])))

            else:  # pad native to len of is_tts & total
                x_native = np.pad(x_native, (0, max(0, total.shape[0] - x_native.shape[0])))
            # print(total.shape, x_native.shape, 'PADDED TRACKS')
            soundfile.write(AUDIO_TRACK,
                            # (is_tts * total + (1-is_tts) * x_native)[:, None],
                            (.64 * total + .27 * x_native)[:, None],
                            24000)
        else:  # Video from plain (.txt)
            OUT_FILE = 'tmp.mp4'
            x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector,
                               voice=args.voice,
                               soundscape=args.soundscape,
                               speed=args.speed)
            soundfile.write(AUDIO_TRACK, x, 24000)

    # IMAGE 2 SPEECH

    if args.image is not None:

        STATIC_FRAME = args.image  # 'assets/image_from_T31.jpg'
        OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'

        # SILENT CLIP

        clip_silent = ImageClip(STATIC_FRAME).set_duration(5)  # as long as the audio - TTS first
        clip_silent.write_videofile(SILENT_VIDEO, fps=24)

        x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector,
                               voice=args.voice,
                               soundscape=args.soundscape,
                               speed=args.speed
                               )
        soundfile.write(AUDIO_TRACK, x, 24000)
    if args.video or args.image:
        # write final output video
        subprocess.call(
            ["ffmpeg",
                "-y",
                "-i",
                SILENT_VIDEO,
                "-i",
                AUDIO_TRACK,
                "-c:v",
                "copy",
                "-map",
                "0:v:0",
                "-map",
                " 1:a:0",
                CACHE_DIR + OUT_FILE])

        print(f'\noutput video is saved as {OUT_FILE}')
        
    else:
        
        # Fallback: No image nor video provided - do only tts
        x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector, 
                               voice=args.voice,
                               soundscape=args.soundscape,
                               speed=args.speed)
        OUT_FILE = 'tmp.wav'
        soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)


    

    # audios = [msinference.inference(text, 
    #                                 msinference.compute_style(f'voices/{voice}.wav'), 
    #                                 alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)]
    # # for t in [text]:
    # output_buffer = io.BytesIO()
    # write(output_buffer, 24000, np.concatenate(audios))
    # response = Response(output_buffer.getvalue())
    # response.headers["Content-Type"] = "audio/wav"
    # https://stackoverflow.com/questions/67591467/
    #            flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
    
    
    
    # send server's output as default file -> srv_result.xx
    print(f'\n=SERVER saved as {OUT_FILE=}\n')
    response = send_from_directory(CACHE_DIR, path=OUT_FILE)
    response.headers['suffix-file-type'] = OUT_FILE
    print('________________\n              ? \n_______________')
    return response


if __name__ == "__main__":
    app.run(host="0.0.0.0")