File size: 16,370 Bytes
d72b2c3 38f0a43 d72b2c3 38f0a43 d72b2c3 38f0a43 d72b2c3 966f861 d72b2c3 38f0a43 d72b2c3 38f0a43 5b7599e 38f0a43 5b7599e 38f0a43 5b7599e 38f0a43 5b7599e 38f0a43 5b7599e 38f0a43 5b7599e 38f0a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import torch
from cached_path import cached_path
import nltk
import audresample
# nltk.download('punkt')
import numpy as np
np.random.seed(0)
import time
import yaml
import torch.nn.functional as F
import copy
import torchaudio
import librosa
from models import *
from munch import Munch
from torch import nn
from nltk.tokenize import word_tokenize
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# IPA Phonemizer: https://github.com/bootphon/phonemizer
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
# START UTIL
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
# ======== UTILS ABOVE
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
# print("MPS would be available but cannot be used rn")
pass
# device = 'mps'
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
config = yaml.safe_load(open(str('Utils/config.yml')))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def inference(text,
ref_s,
alpha = 0.3,
beta = 0.7,
diffusion_steps=5,
embedding_scale=1,
use_gruut=False):
text = text.strip()
ps = global_phonemizer.phonemize([text])
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
ps = word_tokenize(ps[0])
# print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
ps = ' '.join(ps)
tokens = textclenaer(ps)
# print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
# print(f'TOKENSFINAL: {ps=}\n\n')
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# -----------------------
# WHO TRANSLATES these tokens to sylla
# print(text_mask.shape, '\n__\n', tokens, '\n__\n', text_mask.min(), text_mask.max())
# text_mask=is binary
# tokes = tensor([[ 0, 55, 157, 86, 125, 83, 55, 156, 57, 158, 123, 48, 83, 61,
# 157, 102, 61, 16, 138, 64, 16, 53, 156, 138, 54, 62, 131, 85,
# 123, 83, 54, 16, 50, 156, 86, 123, 102, 125, 102, 46, 147, 16,
# 62, 135, 16, 76, 158, 92, 55, 156, 86, 56, 62, 177, 46, 16,
# 50, 157, 43, 102, 58, 85, 55, 156, 51, 158, 46, 51, 158, 83,
# 16, 48, 76, 158, 123, 16, 72, 53, 61, 157, 86, 61, 83, 44,
# 156, 102, 54, 177, 125, 51, 16, 72, 56, 46, 16, 102, 112, 53,
# 54, 156, 63, 158, 147, 83, 56, 16, 4]], device='cuda:0')
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# print('BERTdu', bert_dur.shape, tokens.shape, '\n') # bert what is the 768 per token -> IS USED in sampler
# BERTdu torch.Size([1, 11, 768]) torch.Size([1, 11])
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
x = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
x = x.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model
x /= np.abs(x).max() + 1e-7
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import re
import tempfile
import torch
import sys
import numpy as np
import audiofile
from huggingface_hub import hf_hub_download
# Setup TTS env
if "vits" not in sys.path:
sys.path.append("Modules/vits")
from Modules.vits import commons, utils
from Modules.vits.models import SynthesizerTrn
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
class TextForeign(object):
def __init__(self, vocab_file):
self.symbols = [
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
"""
sequence = []
clean_text = text.strip()
for symbol in clean_text:
symbol_id = self._symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def uromanize(self, text, uroman_pl):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join([text]))
cmd = f"perl " + uroman_pl
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
outtexts = []
with open(tf2.name) as f:
for line in f:
line = re.sub(r"\s+", " ", line).strip()
outtexts.append(line)
outtext = outtexts[0]
return outtext
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def filter_oov(self, text, lang=None):
val_chars = self._symbol_to_id
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
return txt_filt
def foreign(text=None, # list of text
lang='romanian',
speed=None):
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang.lower():
lang_code = 'hun'
elif 'ser' in lang.lower():
if has_cyrillic(text[0]): # check 0-th sentence if is cyrillic
lang_code = 'rmc-script_cyrillic' # romani carpathian (also has lating/cyrillic Vlax)
else:
lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
elif 'rom' in lang.lower():
lang_code = 'ron'
speed = 1.24 if speed is None else speed
else:
lang_code = lang.split()[0].strip()
# Decoded Language
print(f'\n\nLANG {lang_code=}\n_____________________\n')
vocab_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="vocab.txt",
subfolder=f"models/{lang_code}",
)
config_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="config.json",
subfolder=f"models/{lang_code}",
)
g_pth = hf_hub_download(
repo_id="facebook/mms-tts",
filename="G_100000.pth",
subfolder=f"models/{lang_code}",
)
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextForeign(vocab_file)
net_g = SynthesizerTrn(
len(text_mapper.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
)
net_g.to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(g_pth, net_g, None)
# TTS via MMS
is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
# CALL TTS
x = []
for _t in text:
if is_uroman:
uroman_dir = "Utils/uroman"
assert os.path.exists(uroman_dir)
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
_t = text_mapper.uromanize(_t, uroman_pl)
_t = _t.lower().replace("ţ", "ț").replace('ț','ts') #.replace('ț', 'ts').replace('Ţ', 'ts').replace('î', 'u').replace('Î', 'u')
_t = text_mapper.filter_oov(_t, lang=lang)
# print(f'{speed=}\n\n\n\n_______________________________ {_t}')
stn_tst = text_mapper.get_text(_t, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
x.append(
net_g.infer(
x_tst,
x_tst_lengths,
noise_scale=0.667,
noise_scale_w=1, #0, #0.8,
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
)
x = np.concatenate(x)
x /= np.abs(x).max() + 1e-7
# hyp = (hyp * 32768).astype(np.int16)
# x = hyp #, text
print(x.shape, x.min(), x.max(), hps.data.sampling_rate) # (hps.data.sampling_rate,
x = audresample.resample(signal=x.astype(np.float32),
original_rate=16000,
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
return x
# LANG = 'eng'
# _t = 'Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence'
# x = synthesize(text=_t, lang=LANG, speed=1.14)
# audiofile.write('_r.wav', x, 16000) # mms-tts = 16,000
|