File size: 16,370 Bytes
d72b2c3
 
 
38f0a43
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f0a43
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f0a43
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
966f861
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f0a43
d72b2c3
 
 
38f0a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b7599e
 
 
38f0a43
 
 
 
 
 
 
 
5b7599e
38f0a43
5b7599e
38f0a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b7599e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f0a43
5b7599e
 
 
38f0a43
 
 
 
 
 
 
 
 
5b7599e
 
 
38f0a43
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import torch
from cached_path import cached_path
import nltk
import audresample
# nltk.download('punkt')
import numpy as np
np.random.seed(0)
import time
import yaml
import torch.nn.functional as F
import copy
import torchaudio
import librosa
from models import *
from munch import Munch
from torch import nn
from nltk.tokenize import word_tokenize

torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True


# IPA Phonemizer: https://github.com/bootphon/phonemizer

_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"

# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)

dicts = {}
for i in range(len((symbols))):
    dicts[symbols[i]] = i

class TextCleaner:
    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts
        print(len(dicts))
    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError:
                print('CLEAN', text)
        return indexes



textclenaer = TextCleaner()


to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4

# START UTIL



def alpha_num(f):
    f = re.sub(' +', ' ', f)              # delete spaces
    f = re.sub(r'[^A-Z a-z0-9 ]+', '', f)  # del non alpha num
    return f



def recursive_munch(d):
    if isinstance(d, dict):
        return Munch((k, recursive_munch(v)) for k, v in d.items())
    elif isinstance(d, list):
        return [recursive_munch(v) for v in d]
    else:
        return d
    

    
# ======== UTILS ABOVE    

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor

def compute_style(path):
    wave, sr = librosa.load(path, sr=24000)
    audio, index = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)

device = 'cpu'
if torch.cuda.is_available():
    device = 'cuda'
elif torch.backends.mps.is_available():
    # print("MPS would be available but cannot be used rn")
    pass
    # device = 'mps'

import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))


config = yaml.safe_load(open(str('Utils/config.yml')))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)

model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']

for key in model:
    if key in params:
        print('%s loaded' % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:] # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])
_ = [model[key].eval() for key in model]

from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
    clamp=False
)

def inference(text, 
              ref_s, 
              alpha = 0.3, 
              beta = 0.7, 
              diffusion_steps=5, 
              embedding_scale=1, 
              use_gruut=False):
    text = text.strip()
    ps = global_phonemizer.phonemize([text])
    # print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
    ps = word_tokenize(ps[0])
    # print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
    ps = ' '.join(ps)
    tokens = textclenaer(ps)
    # print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
    # print(f'TOKENSFINAL: {ps=}\n\n')

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)
        # -----------------------
        # WHO TRANSLATES these tokens to sylla
        # print(text_mask.shape, '\n__\n', tokens, '\n__\n',  text_mask.min(), text_mask.max())
        # text_mask=is binary
        # tokes =  tensor([[  0,  55, 157,  86, 125,  83,  55, 156,  57, 158, 123,  48,  83,  61,
                        #  157, 102,  61,  16, 138,  64,  16,  53, 156, 138,  54,  62, 131,  85,
                        #  123,  83,  54,  16,  50, 156,  86, 123, 102, 125, 102,  46, 147,  16,
                        #   62, 135,  16,  76, 158,  92,  55, 156,  86,  56,  62, 177,  46,  16,
                        #   50, 157,  43, 102,  58,  85,  55, 156,  51, 158,  46,  51, 158,  83,
                        #   16,  48,  76, 158, 123,  16,  72,  53,  61, 157,  86,  61,  83,  44,
                        #  156, 102,  54, 177, 125,  51,  16,  72,  56,  46,  16, 102, 112,  53,
                        #   54, 156,  63, 158, 147,  83,  56,  16,   4]], device='cuda:0') 


        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
        # print('BERTdu', bert_dur.shape, tokens.shape, '\n') # bert what is the 768 per token -> IS USED in sampler
        # BERTdu torch.Size([1, 11, 768]) torch.Size([1, 11])

        s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
                                          embedding=bert_dur,
                                          embedding_scale=embedding_scale,
                                            features=ref_s, # reference from the same speaker as the embedding
                                             num_steps=diffusion_steps).squeeze(1)
     

        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
        s = beta * s + (1 - beta)  * ref_s[:, 128:]

        d = model.predictor.text_encoder(d_en,
                                         s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)

        duration = torch.sigmoid(duration).sum(axis=-1)
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)


        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(en)
            asr_new[:, :, 0] = en[:, :, 0]
            asr_new[:, :, 1:] = en[:, :, 0:-1]
            en = asr_new

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(asr)
            asr_new[:, :, 0] = asr[:, :, 0]
            asr_new[:, :, 1:] = asr[:, :, 0:-1]
            asr = asr_new

        x = model.decoder(asr,
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))


    x = x.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model
    
    x /= np.abs(x).max() + 1e-7
    
    return x




# ___________________________________________________________

# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________

# -*- coding: utf-8 -*-

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import re
import tempfile
import torch
import sys
import numpy as np
import audiofile
from huggingface_hub import hf_hub_download

# Setup TTS env
if "vits" not in sys.path:
    sys.path.append("Modules/vits")

from Modules.vits import commons, utils
from Modules.vits.models import SynthesizerTrn

TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
    for line in f:
        iso, name = line.split(",", 1)
        TTS_LANGUAGES[iso.strip()] = name.strip()
        # f2.write(iso + ',' + name.replace("a S","")+'\n')
        
        
        
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)




def has_cyrillic(text):
    # https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
    return bool(re.search('[\u0400-\u04FF]', text))

class TextForeign(object):
    def __init__(self, vocab_file):
        self.symbols = [
            x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
        ]
        self.SPACE_ID = self.symbols.index(" ")
        self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
        self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}

    def text_to_sequence(self, text, cleaner_names):
        """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
        Args:
        text: string to convert to a sequence
        cleaner_names: names of the cleaner functions to run the text through
        Returns:
        List of integers corresponding to the symbols in the text
        """
        sequence = []
        clean_text = text.strip()
        for symbol in clean_text:
            symbol_id = self._symbol_to_id[symbol]
            sequence += [symbol_id]
        return sequence

    def uromanize(self, text, uroman_pl):
        iso = "xxx"
        with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
            with open(tf.name, "w") as f:
                f.write("\n".join([text]))
            cmd = f"perl " + uroman_pl
            cmd += f" -l {iso} "
            cmd += f" < {tf.name} > {tf2.name}"
            os.system(cmd)
            outtexts = []
            with open(tf2.name) as f:
                for line in f:
                    line = re.sub(r"\s+", " ", line).strip()
                    outtexts.append(line)
            outtext = outtexts[0]
        return outtext

    def get_text(self, text, hps):
        text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
        if hps.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm

    def filter_oov(self, text, lang=None):
        val_chars = self._symbol_to_id
        txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
        return txt_filt

def foreign(text=None,   # list of text
            lang='romanian',
            speed=None):
    # https://huggingface.co/spaces/mms-meta/MMS
    
    if 'hun' in lang.lower():
        
        lang_code = 'hun'
        
    elif 'ser' in lang.lower():
        
        if has_cyrillic(text[0]):  # check 0-th sentence if is cyrillic
            
            lang_code = 'rmc-script_cyrillic'   # romani carpathian (also has lating/cyrillic Vlax)
        
        else:
            
            lang_code = 'rmc-script_latin'   # romani carpathian (has also Vlax)
        
    elif 'rom' in lang.lower():
        
        lang_code = 'ron'
        speed = 1.24 if speed is None else speed
        
    else:
        lang_code = lang.split()[0].strip()
    # Decoded Language
    print(f'\n\nLANG {lang_code=}\n_____________________\n')
    vocab_file = hf_hub_download(
        repo_id="facebook/mms-tts",
        filename="vocab.txt",
        subfolder=f"models/{lang_code}",
    )
    config_file = hf_hub_download(
        repo_id="facebook/mms-tts",
        filename="config.json",
        subfolder=f"models/{lang_code}",
    )
    g_pth = hf_hub_download(
        repo_id="facebook/mms-tts",
        filename="G_100000.pth",
        subfolder=f"models/{lang_code}",
    )
    hps = utils.get_hparams_from_file(config_file)
    text_mapper = TextForeign(vocab_file)
    net_g = SynthesizerTrn(
        len(text_mapper.symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model,
    )
    net_g.to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(g_pth, net_g, None)
    
    # TTS via MMS

    is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
    
    # CALL TTS
    
    x = []
    
    for _t in text:
        
        
        
        if is_uroman:
            uroman_dir = "Utils/uroman"
            assert os.path.exists(uroman_dir)
            uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
            _t = text_mapper.uromanize(_t, uroman_pl)

        _t = _t.lower().replace("ţ", "ț").replace('ț','ts') #.replace('ț', 'ts').replace('Ţ', 'ts').replace('î', 'u').replace('Î', 'u')
        _t = text_mapper.filter_oov(_t, lang=lang)
        # print(f'{speed=}\n\n\n\n_______________________________ {_t}')
        stn_tst = text_mapper.get_text(_t, hps)
        with torch.no_grad():
            x_tst = stn_tst.unsqueeze(0).to(device)
            x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
            x.append(
                net_g.infer(
                    x_tst,
                    x_tst_lengths,
                    noise_scale=0.667,
                    noise_scale_w=1, #0, #0.8,
                    length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
            )
            
    x = np.concatenate(x)            
            
    x /= np.abs(x).max() + 1e-7

    # hyp = (hyp * 32768).astype(np.int16)
    # x =  hyp  #, text
    print(x.shape, x.min(), x.max(), hps.data.sampling_rate)  # (hps.data.sampling_rate, 
    
    x = audresample.resample(signal=x.astype(np.float32),
                             original_rate=16000,
                             target_rate=24000)[0, :]  # reshapes (64,) -> (1,64)
    
    
    
    return x




# LANG = 'eng'
# _t = 'Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence'

# x = synthesize(text=_t, lang=LANG, speed=1.14)
# audiofile.write('_r.wav', x, 16000)  # mms-tts = 16,000