File size: 16,552 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d2ffdd6
 
 
 
0572d9a
d72b2c3
d2ffdd6
d72b2c3
 
 
 
 
1fc3525
d72b2c3
 
 
 
 
d2ffdd6
 
 
 
 
 
 
 
 
4b59bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ffdd6
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ffdd6
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ffdd6
d72b2c3
 
 
 
 
 
 
 
966f861
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
0572d9a
 
 
966f861
0572d9a
966f861
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966f861
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
0572d9a
d72b2c3
 
 
 
 
 
 
966f861
 
 
0572d9a
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
966f861
 
 
 
 
0572d9a
966f861
ceb19de
d72b2c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import audresample
import text_utils
import msinference
import re
import srt
import subprocess
import cv2
import markdown
import json
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from moviepy.editor import *
from audiocraft.audiogen import AudioGen, audio_write
CACHE_DIR = 'flask_cache/'
SOUNDSCAPE_DURATION = 6
sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
sound_generator.set_generation_params(duration=SOUNDSCAPE_DURATION)
print(f'{sound_generator.sample_rate=}')
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)


# SSH AGENT
#   eval $(ssh-agent -s)
#   ssh-add ~/.ssh/id_ed25519_github2024
#
#   git remote set-url origin [email protected]:audeering/shift
# == 

def _shift(x):
    n = x.shape[0]
    i = np.random.randint(.24 * n, max(1, .74 * n))  # high should be above >= 0
    x = np.roll(x, i)
    # we can add the one or fade it and then amplify
    # the audio is so short 6s that is difficult to not hear the shift somewhere
    # Just concatenate - raw - and then shift - the longconcat audio - many times may fix it
    # fade_in = 1 - .5 * np.tanh(-4*(np.linspace(-10, 10, n) - 9.4))  +  .5 * np.tanh(4*(np.linspace(-10, 10, n) + 9.4))
    return x  #* fade_in   # silence this

def overlay(x, scene=None):
    if scene is not None:
        
        # generate 4
        print('Generating AudioCraft')
        back = [sound_generator.generate(
                                        [scene]
                                            )[0].detach().cpu().numpy()[0, :] for _ in range(4)]
        
        print([j.shape for j in back], len(back), 'BACK')
        
        # upsample to 24kHZ of StyleTTS
        print('Resampling')
        back = [audresample.resample(i,
            original_rate=sound_generator.sample_rate,  # 16000
            target_rate=24000
            )[0, :] for i in back]
        print('Cloning backgrounds')
        # clone/elongate by 4x
        back = [(_shift(np.concatenate([single_gen] * 4))) for single_gen in back]
        
        
        # long ~30s
        back = np.concatenate(back)
        for _ in range(4):
            back = _shift(back)
        
        # clone to exact len of TTS
        n_repeat = len(x) // back.shape[0] + 2
        
        # Additional Repeat - Reach full length of TTS
        print(f'Additional Repeat {n_repeat=}')
        back = np.concatenate(n_repeat * [back])
        back = _shift(back)
        print(f'\n====SOUND BACKGROUND SHAPE\n{back.shape=}',
              f'{np.abs(back.max())=}\n{x.shape=}')
        x = .9 * x + .1 * back[:len(x)]
    else:
        print('sound_background = None')
    return x

def tts_multi_sentence(precomputed_style_vector=None,
                       text=None,
                       voice=None,
                       scene=None):
    '''create 24kHZ np.array with tts

       precomputed_style_vector :   required if en_US or en_UK in voice, so
                                    to perform affective TTS.
       text  : string
       voice : string or None (falls to styleTTS)
       scene : 'A castle in far away lands' -> if passed will generate background sound scene
       '''
    
        
    # StyleTTS2
    if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
        assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
        x = []
        for _sentence in text:
            x.append(msinference.inference(_sentence,
                        precomputed_style_vector,
                                    alpha=0.3,
                                    beta=0.7,
                                    diffusion_steps=7,
                                    embedding_scale=1))
        x = np.concatenate(x)
        
        return overlay(x, scene=scene)
    
    # Fallback - Mimic-3
    text_utils.store_ssml(text=text, voice=voice)  # Text has to be list of single sentences
    ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
    ps.wait()
    x, fs = soundfile.read('_tmp.wav')
    x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :]  # reshapes (64,) -> (1,64)
    
    return overlay(x, sound_background)
    



# voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)

app = Flask(__name__)
cors = CORS(app)


@app.route("/")
def index():
    with open('README.md', 'r') as f:
        return markdown.markdown(f.read())


@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
    # https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
    #                      object-into-a-representation-suitable-for-mongodb
    r = request.form.to_dict(flat=False)
    
    
    # Physically Save Client Files
    for filename, obj in request.files.items():
        obj.save(f'{CACHE_DIR}{filename.replace("/","")}')
        
    print('Saved all files on Server Side\n\n') 

    args = SimpleNamespace(text=None if r.get('text') is None else CACHE_DIR + r.get('text')[0].replace("/",""),
                video=None if r.get('video') is None else CACHE_DIR + r.get('video')[0].replace("/",""),
                image=None if r.get('image') is None else CACHE_DIR + r.get('image')[0].replace("/",""),
                voice=r.get('voice')[0],
                native=None if r.get('native') is None else CACHE_DIR + r.get('native')[0].replace("/",""),
                affective = r.get('affective')[0],
                scene=r.get('scene')[0]
                )
    # print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
    

    print(args, 'ENTER Script')
    do_video_dub = True if args.text.endswith('.srt') else False

    SILENT_VIDEO = '_silent_video.mp4'
    AUDIO_TRACK = '_audio_track.wav'

    if do_video_dub:
        print('==\nFound .srt : {args.txt}, thus Video should be given as well\n\n')
        with open(args.text, "r") as f:
            s = f.read()
        text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
        assert args.video is not None
        native_audio_file = '_tmp.wav'
        subprocess.call(
            ["ffmpeg",
                "-y",  # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
                "-i",
                args.video,
                "-f",
                "mp3",
                "-ar",
                "24000",  # "22050 for mimic3",
                "-vn",
                native_audio_file])
        x_native, _ = soundfile.read(native_audio_file)  # reads mp3
        x_native = x_native[:, 0]  # stereo
        # ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
    else:
        with open(args.text, 'r') as f:
            t = ''.join(f)
        t = re.sub(' +', ' ', t)  # delete spaces
        text = text_utils.split_into_sentences(t)  # split to short sentences (~200 phonemes max)
        
    # ====STYLE VECTOR====

    precomputed_style_vector = None
    if args.native:  # Voice Cloning
        try:
            precomputed_style_vector = msinference.compute_style(args.native)
        except soundfile.LibsndfileError:  # Fallback - internal voice
            print('\n  Could not voice clone audio:', args.native, 'fallback to video or Internal TTS voice.\n')
        if do_video_dub:  # Clone voice via Video
            native_audio_file = args.video.replace('.', '').replace('/', '')
            native_audio_file += '__native_audio_track.wav'
            soundfile.write('tgt_spk.wav',
                np.concatenate([
                    x_native[:int(4 * 24000)]], 0).astype(np.float32), 24000)  # 27400?
            precomputed_style_vector = msinference.compute_style('tgt_spk.wav')

    # NOTE: style vector may be None

    if precomputed_style_vector is None:
        if 'en_US' in args.voice or 'en_UK' in args.voice:
            _dir = '/' if args.affective else '_v2/'
            precomputed_style_vector = msinference.compute_style(
                'assets/wavs/style_vector' + _dir + args.voice.replace(
                    '/', '_').replace(
                    '#', '_').replace(
                    'cmu-arctic', 'cmu_arctic').replace(
                    '_low', '') + '.wav')
    print('\n  STYLE VECTOR \n', precomputed_style_vector.shape)
    # ====SILENT VIDEO====

    if args.video is not None:
        # banner
        frame_tts = np.zeros((104, 1920, 3), dtype=np.uint8)
        font                   = cv2.FONT_HERSHEY_SIMPLEX
        bottomLeftCornerOfText = (240, 74)  # w,h
        fontScale              = 2
        fontColor              = (255, 255, 255)
        thickness              = 4
        lineType               = 2
        cv2.putText(frame_tts, 'TTS',
            bottomLeftCornerOfText,
            font,
            fontScale,
            fontColor,
            thickness,
            lineType)
        #     cv2.imshow('i', frame_tts); cv2.waitKey(); cv2.destroyAllWindows()
        # ====================================== NATIVE VOICE
        frame_orig = np.zeros((104, 1920, 3), dtype=np.uint8)
        font                   = cv2.FONT_HERSHEY_SIMPLEX
        bottomLeftCornerOfText = (101, 74)  # w,h
        fontScale              = 2
        fontColor              = (255, 255, 255)
        thickness              = 4
        lineType               = 1000
        cv2.putText(frame_orig, 'ORIGINAL VOICE',
            bottomLeftCornerOfText,
            font,
            fontScale,
            fontColor,
            thickness,
            lineType)
        # ====SILENT VIDEO EXTRACT====
        # DONLOAD SRT from youtube
        #
        #     yt-dlp --write-sub --sub-lang en --convert-subs "srt" https://www.youtube.com/watch?v=F1Ib7TAu7eg&list=PL4x2B6LSwFewdDvRnUTpBM7jkmpwouhPv&index=2
        #
        #
        # .mkv ->.mp4 moviepy loads only .mp4
        #
        #     ffmpeg -y -i Distaff\ \[qVonBgRXcWU\].mkv -c copy -c:a aac Distaff_qVonBgRXcWU.mp4
        #           video_file, srt_file = ['assets/Head_of_fortuna.mp4',
        #                         'assets/head_of_fortuna_en.srt']
        #
        video_file = args.video
        vf = VideoFileClip(video_file)
        try:
            # inpaint banners if native voice
            num = x_native.shape[0]
            is_tts = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, num) + 9.4))  # fade heaviside

            def inpaint_banner(get_frame, t):
                '''blend banner - (now plays) tts or native voic
                '''
                im = np.copy(get_frame(t))

                ix = int(t * 24000)

                if is_tts[ix] > .5:  # mask is 1 thus tts else native
                    frame = frame_tts
                else:
                    frame = frame_orig
                h, w, _ = frame.shape
                # im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
                offset_h = 24
                im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h + offset_h, :w, :] 
                                                    + .6 * frame).astype(np.uint8)

                # im2 = np.concatenate([im, frame_tts], 0)
                # cv2.imshow('t', im2); cv2.waitKey(); cv2.destroyAllWindows()
                return im  # np.concatenate([im, frane_ttts], 0)
        except UnboundLocalError:  # args.native == False
            def inpaint_banner(get_frame, t):
                im = np.copy(get_frame(t))
                frame = frame_tts
                h, w, _ = frame.shape
                offset_h = 24
                im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h+offset_h, :w, :] 
                                                    + .6 * frame).astype(np.uint8)
                return im
        vf = vf.fl(inpaint_banner)
        vf.write_videofile(SILENT_VIDEO)

        # ==== TTS .srt ====

        if do_video_dub:
            OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
            subtitles = text
            MAX_LEN = int(subtitles[-1][2] + 17) * 24000  
            # 17 extra seconds fail-safe for long-last-segment
            print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
            pieces = []
            for k, (_text_, orig_start, orig_end) in enumerate(subtitles):

                # PAUSES ?????????????????????????


                pieces.append(tts_multi_sentence(text=[_text_],
                                                 precomputed_style_vector=precomputed_style_vector,
                                                 voice=args.voice,
                                                 scene=args.scene)
                              )
            total = np.concatenate(pieces, 0)
            # x = audresample.resample(x.astype(np.float32), 24000, 22050)  # reshapes (64,) -> (1,64)
            # PAD SHORTEST of  TTS / NATIVE
            if len(x_native) > len(total):
                total = np.pad(total, (0, max(0, x_native.shape[0] - total.shape[0])))

            else:  # pad native to len of is_tts & total
                x_native = np.pad(x_native, (0, max(0, total.shape[0] - x_native.shape[0])))
            # print(total.shape, x_native.shape, 'PADDED TRACKS')
            soundfile.write(AUDIO_TRACK,
                            # (is_tts * total + (1-is_tts) * x_native)[:, None],
                            (.64 * total + .27 * x_native)[:, None],
                            24000)
        else:  # Video from plain (.txt)
            OUT_FILE = 'tmp.mp4'
            x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector,
                               voice=args.voice,
                               scene=args.scene)
            soundfile.write(AUDIO_TRACK, x, 24000)

    # IMAGE 2 SPEECH

    if args.image is not None:

        STATIC_FRAME = args.image  # 'assets/image_from_T31.jpg'
        OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'

        # SILENT CLIP

        clip_silent = ImageClip(STATIC_FRAME).set_duration(5)  # as long as the audio - TTS first
        clip_silent.write_videofile(SILENT_VIDEO, fps=24)

        x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector,
                               voice=args.voice,
                               scene=args.scene
                               )
        soundfile.write(AUDIO_TRACK, x, 24000)
    if args.video or args.image:
        # write final output video
        subprocess.call(
            ["ffmpeg",
                "-y",
                "-i",
                SILENT_VIDEO,
                "-i",
                AUDIO_TRACK,
                "-c:v",
                "copy",
                "-map",
                "0:v:0",
                "-map",
                " 1:a:0",
                CACHE_DIR + OUT_FILE])

        print(f'\noutput video is saved as {OUT_FILE}')
        
    else:
        
        # Fallback: No image nor video provided - do only tts
        x = tts_multi_sentence(text=text,
                               precomputed_style_vector=precomputed_style_vector, 
                               voice=args.voice,
                               scene=args.scene)
        OUT_FILE = 'tmp.wav'
        soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)


    

    # audios = [msinference.inference(text, 
    #                                 msinference.compute_style(f'voices/{voice}.wav'), 
    #                                 alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)]
    # # for t in [text]:
    # output_buffer = io.BytesIO()
    # write(output_buffer, 24000, np.concatenate(audios))
    # response = Response(output_buffer.getvalue())
    # response.headers["Content-Type"] = "audio/wav"
    # https://stackoverflow.com/questions/67591467/
    #            flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
    
    
    
    # send server's output as default file -> srv_result.xx
    print(f'\n=SERVER saved as {OUT_FILE=}\n')
    response = send_from_directory(CACHE_DIR, path=OUT_FILE)
    response.headers['suffix-file-type'] = OUT_FILE
    print('________________\n              ? \n_______________')
    return response


if __name__ == "__main__":
    app.run(host="0.0.0.0")