Dionyssos's picture
audiocraft
d72b2c3
raw
history blame
10.6 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from concurrent.futures import ProcessPoolExecutor
from contextlib import contextmanager
from functools import wraps, lru_cache
import hashlib
import json
import logging
from pathlib import Path
import typing as tp
import flashy
import flashy.distrib
import omegaconf
import torch
from torch.nn.utils.rnn import pad_sequence
logger = logging.getLogger(__name__)
def model_hash(model: torch.nn.Module) -> str:
"""Return a model hash. This should allow us to track regressions in model init
from the logs of past experiments.
"""
hasher = hashlib.sha1()
for p in model.parameters():
hasher.update(p.data.cpu().numpy().tobytes())
return hasher.hexdigest()
def dict_from_config(cfg: omegaconf.DictConfig) -> dict:
"""Convenience function to map an omegaconf configuration to a dictionary.
Args:
cfg (omegaconf.DictConfig): Original configuration to map to dict.
Returns:
dict: Config as dictionary object.
"""
dct = omegaconf.OmegaConf.to_container(cfg, resolve=True)
assert isinstance(dct, dict)
return dct
def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset:
if max_samples >= len(dataset):
return dataset
generator = torch.Generator().manual_seed(seed)
perm = torch.randperm(len(dataset), generator=generator)
return torch.utils.data.Subset(dataset, perm[:max_samples].tolist())
def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int,
num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader:
"""Convenience function to load dataset into a dataloader with optional subset sampling.
Args:
dataset: Dataset to load.
num_samples (Optional[int]): Number of samples to limit subset size.
batch_size (int): Batch size.
num_workers (int): Number of workers for data loading.
seed (int): Random seed.
"""
if num_samples is not None:
dataset = random_subset(dataset, num_samples, seed)
dataloader = flashy.distrib.loader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
**kwargs
)
return dataloader
def get_dataset_from_loader(dataloader):
dataset = dataloader.dataset
if isinstance(dataset, torch.utils.data.Subset):
return dataset.dataset
else:
return dataset
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
Args:
input (torch.Tensor): The input tensor containing probabilities.
num_samples (int): Number of samples to draw.
replacement (bool): Whether to draw with replacement or not.
Keywords args:
generator (torch.Generator): A pseudorandom number generator for sampling.
Returns:
torch.Tensor: Last dimension contains num_samples indices
sampled from the multinomial probability distribution
located in the last dimension of tensor input.
"""
input_ = input.reshape(-1, input.shape[-1])
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
output = output_.reshape(*list(input.shape[:-1]), -1)
return output
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
"""Sample next token from top K values along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
k (int): The k in “top-k”.
Returns:
torch.Tensor: Sampled tokens.
"""
top_k_value, _ = torch.topk(probs, k, dim=-1)
min_value_top_k = top_k_value[..., [-1]]
probs *= (probs >= min_value_top_k).float()
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = multinomial(probs, num_samples=1)
return next_token
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
p (int): The p in “top-p”.
Returns:
torch.Tensor: Sampled tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort *= (~mask).float()
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
class DummyPoolExecutor:
"""Dummy pool executor to use when we actually have only 1 worker.
(e.g. instead of ProcessPoolExecutor).
"""
class DummyResult:
def __init__(self, func, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
def result(self):
return self.func(*self.args, **self.kwargs)
def __init__(self, workers, mp_context=None):
pass
def submit(self, func, *args, **kwargs):
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
return
def get_pool_executor(num_workers: int, mp_context=None):
return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1)
def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor:
"""Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences).
For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]]
Args:
lengths (torch.Tensor): tensor with lengths
max_len (int): can set the max length manually. Defaults to None.
Returns:
torch.Tensor: mask with 0s where there is pad tokens else 1s
"""
assert len(lengths.shape) == 1, "Length shape should be 1 dimensional."
final_length = lengths.max().item() if not max_len else max_len
final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor
return torch.arange(final_length, device=lengths.device)[None, :] < lengths[:, None]
def hash_trick(word: str, vocab_size: int) -> int:
"""Hash trick to pair each word with an index
Args:
word (str): word we wish to convert to an index
vocab_size (int): size of the vocabulary
Returns:
int: index of the word in the embedding LUT
"""
hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16)
return hash % vocab_size
def with_rank_rng(base_seed: int = 1234):
"""Decorator for a function so that the function will use a Random Number Generator
whose state depend on the GPU rank. The original RNG state is restored upon returning.
Args:
base_seed (int): Random seed.
"""
def _decorator(fun: tp.Callable):
@wraps(fun)
def _decorated(*args, **kwargs):
state = torch.get_rng_state()
seed = base_seed ^ flashy.distrib.rank()
torch.manual_seed(seed)
logger.debug('Rank dependent seed set to %d', seed)
try:
return fun(*args, **kwargs)
finally:
torch.set_rng_state(state)
logger.debug('RNG state restored.')
return _decorated
return _decorator
def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Get a list of tensors and collate them to a single tensor. according to the following logic:
- `dim` specifies the time dimension which will be stacked and padded.
- The output will contain 1 new dimension (dimension index 0) which will be the size of
of the original list.
Args:
tensors (tp.List[torch.Tensor]): List of tensors to collate.
dim (int): Dimension which will be stacked and padded.
Returns:
tp.Tuple[torch.Tensor, torch.Tensor]:
torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension
(dimension index 0) which will be the size of the original list.
torch.Tensor: Tensor containing length of original tensor sizes (without padding).
"""
tensors = [x.transpose(0, dim) for x in tensors]
lens = torch.LongTensor([len(x) for x in tensors])
padded_tensors = pad_sequence(tensors)
padded_tensors = padded_tensors.transpose(0, 1)
padded_tensors = padded_tensors.transpose(1, dim + 1)
return padded_tensors, lens
# TODO: Move to flashy?
def copy_state(state: tp.Any, device: tp.Union[torch.device, str] = 'cpu',
dtype: tp.Optional[torch.dtype] = None) -> tp.Any:
if isinstance(state, torch.Tensor):
if dtype is None or not state.is_floating_point():
dtype = state.dtype
return state.detach().to(device=device, dtype=dtype, copy=True)
elif isinstance(state, dict):
return {k: copy_state(v, device, dtype) for k, v in state.items()}
elif isinstance(state, list):
return [copy_state(v, device, dtype) for v in state]
# TODO: Move to flashy?
@contextmanager
def swap_state(model, state, **kwargs):
old_state = copy_state(model.state_dict())
model.load_state_dict(state, **kwargs)
try:
yield
finally:
model.load_state_dict(old_state)
@lru_cache(None)
def warn_once(logger, msg):
"""Warn about a given message only once."""
logger.warning(msg)
def is_jsonable(x: tp.Any):
"""Check if an object can be serialized into a json:"""
try:
json.dumps(x)
return True
except (TypeError, OverflowError):
return False
def load_clap_state_dict(clap_model, path: tp.Union[str, Path]):
"""Wrapper around state dict loading of CLAP model
addressing compatibility issues between CLAP and AudioCraft
HuggingFace transformer version.
See: https://github.com/LAION-AI/CLAP/issues/118
"""
from clap_module.factory import load_state_dict # type: ignore
pkg = load_state_dict(path)
pkg.pop('text_branch.embeddings.position_ids', None)
clap_model.model.load_state_dict(pkg)