|
import torch |
|
from cached_path import cached_path |
|
|
|
import audresample |
|
|
|
import numpy as np |
|
import yaml |
|
import torchaudio |
|
import librosa |
|
from models import * |
|
from munch import Munch |
|
from nltk.tokenize import word_tokenize |
|
|
|
torch.manual_seed(0) |
|
|
|
|
|
np.random.seed(0) |
|
|
|
|
|
|
|
_pad = "$" |
|
_punctuation = ';:,.!?¡¿—…"«»“” ' |
|
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' |
|
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" |
|
|
|
|
|
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) |
|
|
|
dicts = {} |
|
for i in range(len((symbols))): |
|
dicts[symbols[i]] = i |
|
|
|
class TextCleaner: |
|
def __init__(self, dummy=None): |
|
self.word_index_dictionary = dicts |
|
print(len(dicts)) |
|
def __call__(self, text): |
|
indexes = [] |
|
for char in text: |
|
try: |
|
indexes.append(self.word_index_dictionary[char]) |
|
except KeyError: |
|
print('CLEAN', text) |
|
return indexes |
|
|
|
|
|
|
|
textclenaer = TextCleaner() |
|
|
|
|
|
to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) |
|
mean, std = -4, 4 |
|
|
|
|
|
|
|
|
|
|
|
def alpha_num(f): |
|
f = re.sub(' +', ' ', f) |
|
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) |
|
return f |
|
|
|
|
|
|
|
def recursive_munch(d): |
|
if isinstance(d, dict): |
|
return Munch((k, recursive_munch(v)) for k, v in d.items()) |
|
elif isinstance(d, list): |
|
return [recursive_munch(v) for v in d] |
|
else: |
|
return d |
|
|
|
|
|
|
|
|
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
def preprocess(wave): |
|
wave_tensor = torch.from_numpy(wave).float() |
|
mel_tensor = to_mel(wave_tensor) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std |
|
return mel_tensor |
|
|
|
def compute_style(path): |
|
wave, sr = librosa.load(path, sr=24000) |
|
audio, index = librosa.effects.trim(wave, top_db=30) |
|
if sr != 24000: |
|
audio = librosa.resample(audio, sr, 24000) |
|
mel_tensor = preprocess(audio).to(device) |
|
|
|
with torch.no_grad(): |
|
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) |
|
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) |
|
|
|
return torch.cat([ref_s, ref_p], dim=1) |
|
|
|
device = 'cpu' |
|
if torch.cuda.is_available(): |
|
device = 'cuda' |
|
elif torch.backends.mps.is_available(): |
|
|
|
pass |
|
|
|
|
|
import phonemizer |
|
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) |
|
|
|
|
|
|
|
config = yaml.safe_load(open(str('Utils/config.yml'))) |
|
|
|
|
|
ASR_config = config.get('ASR_config', False) |
|
ASR_path = config.get('ASR_path', False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get('F0_path', False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
|
|
from Utils.PLBERT.util import load_plbert |
|
BERT_path = config.get('PLBERT_dir', False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
model_params = recursive_munch(config['model_params']) |
|
model = build_model(model_params, text_aligner, pitch_extractor, plbert) |
|
_ = [model[key].eval() for key in model] |
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu') |
|
params = params_whole['net'] |
|
|
|
for key in model: |
|
if key in params: |
|
print('%s loaded' % key) |
|
try: |
|
model[key].load_state_dict(params[key]) |
|
except: |
|
from collections import OrderedDict |
|
state_dict = params[key] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model[key].load_state_dict(new_state_dict, strict=False) |
|
|
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
|
|
|
|
def inference(text, |
|
ref_s, |
|
use_gruut=False): |
|
|
|
|
|
|
|
text = text.strip() |
|
|
|
ps = global_phonemizer.phonemize([text]) |
|
|
|
ps = word_tokenize(ps[0]) |
|
|
|
ps = ' '.join(ps) |
|
tokens = textclenaer(ps) |
|
|
|
tokens.insert(0, 0) |
|
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) |
|
text_mask = length_to_mask(input_lengths).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t_en = model.text_encoder(tokens, input_lengths, text_mask) |
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
|
|
|
|
|
|
|
|
ref = ref_s[:, :128] |
|
s = ref_s[:, 128:] |
|
|
|
d = model.predictor.text_encoder(d_en, |
|
s, input_lengths, text_mask) |
|
|
|
x, _ = model.predictor.lstm(d) |
|
duration = model.predictor.duration_proj(x) |
|
|
|
duration = torch.sigmoid(duration).sum(axis=-1) |
|
pred_dur = torch.round(duration.squeeze()).clamp(min=1) |
|
|
|
|
|
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) |
|
c_frame = 0 |
|
for i in range(pred_aln_trg.size(0)): |
|
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 |
|
c_frame += int(pred_dur[i].data) |
|
|
|
|
|
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) |
|
if model_params.decoder.type == "hifigan": |
|
asr_new = torch.zeros_like(en) |
|
asr_new[:, :, 0] = en[:, :, 0] |
|
asr_new[:, :, 1:] = en[:, :, 0:-1] |
|
en = asr_new |
|
|
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) |
|
|
|
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) |
|
if model_params.decoder.type == "hifigan": |
|
asr_new = torch.zeros_like(asr) |
|
asr_new[:, :, 0] = asr[:, :, 0] |
|
asr_new[:, :, 1:] = asr[:, :, 0:-1] |
|
asr = asr_new |
|
|
|
x = model.decoder(asr, |
|
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) |
|
|
|
x = x.squeeze().cpu().numpy()[..., :-2504] |
|
|
|
x /= np.abs(x).max() + 1e-7 |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
import torch |
|
import sys |
|
import numpy as np |
|
import audiofile |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
if "vits" not in sys.path: |
|
sys.path.append("Modules/vits") |
|
|
|
from Modules.vits import commons, utils |
|
from Modules.vits.models import SynthesizerTrn |
|
|
|
TTS_LANGUAGES = {} |
|
|
|
with open(f"Utils/all_langs.csv") as f: |
|
for line in f: |
|
iso, name = line.split(",", 1) |
|
TTS_LANGUAGES[iso.strip()] = name.strip() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def has_cyrillic(text): |
|
|
|
return bool(re.search('[\u0400-\u04FF]', text)) |
|
|
|
class TextForeign(object): |
|
def __init__(self, vocab_file): |
|
self.symbols = [ |
|
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines() |
|
] |
|
self.SPACE_ID = self.symbols.index(" ") |
|
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} |
|
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} |
|
|
|
def text_to_sequence(self, text, cleaner_names): |
|
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text. |
|
Args: |
|
text: string to convert to a sequence |
|
cleaner_names: names of the cleaner functions to run the text through |
|
Returns: |
|
List of integers corresponding to the symbols in the text |
|
""" |
|
sequence = [] |
|
clean_text = text.strip() |
|
for symbol in clean_text: |
|
symbol_id = self._symbol_to_id[symbol] |
|
sequence += [symbol_id] |
|
return sequence |
|
|
|
def uromanize(self, text, uroman_pl): |
|
iso = "xxx" |
|
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2: |
|
with open(tf.name, "w") as f: |
|
f.write("\n".join([text])) |
|
cmd = f"perl " + uroman_pl |
|
cmd += f" -l {iso} " |
|
cmd += f" < {tf.name} > {tf2.name}" |
|
os.system(cmd) |
|
outtexts = [] |
|
with open(tf2.name) as f: |
|
for line in f: |
|
line = re.sub(r"\s+", " ", line).strip() |
|
outtexts.append(line) |
|
outtext = outtexts[0] |
|
return outtext |
|
|
|
def get_text(self, text, hps): |
|
text_norm = self.text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
def filter_oov(self, text, lang=None): |
|
val_chars = self._symbol_to_id |
|
txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) |
|
return txt_filt |
|
|
|
def foreign(text=None, |
|
lang='romanian', |
|
speed=None): |
|
|
|
lang = lang.lower() |
|
|
|
|
|
|
|
if 'hun' in lang: |
|
|
|
lang_code = 'hun' |
|
|
|
elif 'ser' in lang or 'bosn' in lang or 'macedon' in lang or 'croatia' in lang: |
|
|
|
if has_cyrillic(text[0]): |
|
|
|
lang_code = 'rmc-script_cyrillic' |
|
|
|
else: |
|
|
|
lang_code = 'rmc-script_latin' |
|
|
|
elif 'rom' in lang: |
|
|
|
lang_code = 'ron' |
|
speed = 1.24 if speed is None else speed |
|
|
|
elif 'ger' in lang: |
|
|
|
lang_code = 'deu' |
|
speed = 1.14 if speed is None else speed |
|
|
|
else: |
|
|
|
lang_code = lang.split()[0].strip() |
|
|
|
|
|
|
|
print(f'\n\nLANG {lang_code=}\n_____________________\n') |
|
vocab_file = hf_hub_download( |
|
repo_id="facebook/mms-tts", |
|
filename="vocab.txt", |
|
subfolder=f"models/{lang_code}", |
|
) |
|
config_file = hf_hub_download( |
|
repo_id="facebook/mms-tts", |
|
filename="config.json", |
|
subfolder=f"models/{lang_code}", |
|
) |
|
g_pth = hf_hub_download( |
|
repo_id="facebook/mms-tts", |
|
filename="G_100000.pth", |
|
subfolder=f"models/{lang_code}", |
|
) |
|
hps = utils.get_hparams_from_file(config_file) |
|
text_mapper = TextForeign(vocab_file) |
|
net_g = SynthesizerTrn( |
|
len(text_mapper.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model, |
|
) |
|
net_g.to(device) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint(g_pth, net_g, None) |
|
|
|
|
|
|
|
is_uroman = hps.data.training_files.split(".")[-1] == "uroman" |
|
|
|
|
|
|
|
x = [] |
|
|
|
for _t in text: |
|
|
|
|
|
|
|
if is_uroman: |
|
uroman_dir = "Utils/uroman" |
|
assert os.path.exists(uroman_dir) |
|
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl") |
|
_t = text_mapper.uromanize(_t, uroman_pl) |
|
|
|
_t = _t.lower().replace("ţ", "ț").replace('ț','ts').replace('î', 'u') |
|
|
|
_t = text_mapper.filter_oov(_t, lang=lang) |
|
|
|
|
|
stn_tst = text_mapper.get_text(_t, hps) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) |
|
x.append( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
noise_scale=0, |
|
noise_scale_w=1, |
|
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy() |
|
) |
|
|
|
x = np.concatenate(x) |
|
|
|
x /= np.abs(x).max() + 1e-7 |
|
|
|
|
|
|
|
x = audresample.resample(signal=x.astype(np.float32), |
|
original_rate=16000, |
|
target_rate=24000)[0, :] |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|