artificial-styletts2 / msinference.py
Dionyssos's picture
HACK pulse noise at End of sentence
989ad3f
import torch
from cached_path import cached_path
# import nltk
import audresample
# nltk.download('punkt')
import numpy as np
import yaml
import torchaudio
import librosa
from models import *
from munch import Munch
from nltk.tokenize import word_tokenize
torch.manual_seed(0)
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True
np.random.seed(0)
# IPA Phonemizer: https://github.com/bootphon/phonemizer
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
# START UTIL
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
# ======== UTILS ABOVE
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
# print("MPS would be available but cannot be used rn")
pass
# device = 'mps'
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
config = yaml.safe_load(open(str('Utils/config.yml')))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
def inference(text,
ref_s,
use_gruut=False):
# Ignore .,; AT end of sentence; or just [-50:]
text = text.strip()
ps = global_phonemizer.phonemize([text])
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
ps = word_tokenize(ps[0])
# print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
ps = ' '.join(ps)
tokens = textclenaer(ps)
# print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
# print(f'TOKENSFINAL: {ps=}\n\n')
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# -----------------------
# WHO TRANSLATES these tokens to sylla
# print(text_mask.shape, '\n__\n', tokens, '\n__\n', text_mask.min(), text_mask.max())
# text_mask=is binary
# tokes = tensor([[ 0, 55, 157, 86, 125, 83, 55, 156, 57, 158, 123, 48, 83, 61,
# 157, 102, 61, 16, 138, 64, 16, 53, 156, 138, 54, 62, 131, 85,
# 123, 83, 54, 16, 50, 156, 86, 123, 102, 125, 102, 46, 147, 16,
# 62, 135, 16, 76, 158, 92, 55, 156, 86, 56, 62, 177, 46, 16,
# 50, 157, 43, 102, 58, 85, 55, 156, 51, 158, 46, 51, 158, 83,
# 16, 48, 76, 158, 123, 16, 72, 53, 61, 157, 86, 61, 83, 44,
# 156, 102, 54, 177, 125, 51, 16, 72, 56, 46, 16, 102, 112, 53,
# 54, 156, 63, 158, 147, 83, 56, 16, 4]], device='cuda:0')
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# print('BERTdu', bert_dur.shape, tokens.shape, '\n') # bert what is the 768 per token -> IS USED in sampler
# BERTdu torch.Size([1, 11, 768]) torch.Size([1, 11])
ref = ref_s[:, :128]
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
x = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
x = x.squeeze().cpu().numpy()[..., :-2504] # weird pulse at the end of sentences
x /= np.abs(x).max() + 1e-7
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import re
import tempfile
import torch
import sys
import numpy as np
import audiofile
from huggingface_hub import hf_hub_download
# Setup TTS env
if "vits" not in sys.path:
sys.path.append("Modules/vits")
from Modules.vits import commons, utils
from Modules.vits.models import SynthesizerTrn
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
class TextForeign(object):
def __init__(self, vocab_file):
self.symbols = [
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
"""
sequence = []
clean_text = text.strip()
for symbol in clean_text:
symbol_id = self._symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def uromanize(self, text, uroman_pl):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join([text]))
cmd = f"perl " + uroman_pl
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
outtexts = []
with open(tf2.name) as f:
for line in f:
line = re.sub(r"\s+", " ", line).strip()
outtexts.append(line)
outtext = outtexts[0]
return outtext
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def filter_oov(self, text, lang=None):
val_chars = self._symbol_to_id
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
return txt_filt
def foreign(text=None, # list of text
lang='romanian',
speed=None):
lang = lang.lower() # https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif 'ser' in lang or 'bosn' in lang or 'macedon' in lang or 'croatia' in lang:
if has_cyrillic(text[0]): # check 0-th sentence if is cyrillic
lang_code = 'rmc-script_cyrillic' # romani carpathian (also has lating/cyrillic Vlax)
else:
lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
elif 'rom' in lang:
lang_code = 'ron'
speed = 1.24 if speed is None else speed
elif 'ger' in lang:
lang_code = 'deu'
speed = 1.14 if speed is None else speed
else:
lang_code = lang.split()[0].strip()
# Load VITS
print(f'\n\nLANG {lang_code=}\n_____________________\n')
vocab_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="vocab.txt",
subfolder=f"models/{lang_code}",
)
config_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="config.json",
subfolder=f"models/{lang_code}",
)
g_pth = hf_hub_download(
repo_id="facebook/mms-tts",
filename="G_100000.pth",
subfolder=f"models/{lang_code}",
)
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextForeign(vocab_file)
net_g = SynthesizerTrn(
len(text_mapper.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
)
net_g.to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(g_pth, net_g, None)
# TTS via MMS
is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
# CALL TTS
x = []
for _t in text:
if is_uroman:
uroman_dir = "Utils/uroman"
assert os.path.exists(uroman_dir)
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
_t = text_mapper.uromanize(_t, uroman_pl)
_t = _t.lower().replace("ţ", "ț").replace('ț','ts').replace('î', 'u')
_t = text_mapper.filter_oov(_t, lang=lang)
# print(f'{speed=}\n\n\n\n_______________________________ {_t}')
stn_tst = text_mapper.get_text(_t, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
x.append(
net_g.infer(
x_tst,
x_tst_lengths,
noise_scale=0, #0.667,
noise_scale_w=1, #0, #0.8,
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
)
x = np.concatenate(x)
x /= np.abs(x).max() + 1e-7
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
x = audresample.resample(signal=x.astype(np.float32),
original_rate=16000,
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
return x
# LANG = 'eng'
# _t = 'Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence'
# x = synthesize(text=_t, lang=LANG, speed=1.14)
# audiofile.write('_r.wav', x, 16000) # mms-tts = 16,000