pkl per sentence - No audinterface
Browse files- correct_figure.py +378 -0
correct_figure.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# we have to evaluate emotion & cer per sentence -> not audinterface sliding window
|
2 |
+
import os
|
3 |
+
import audresample
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import soundfile
|
7 |
+
import json
|
8 |
+
import audb
|
9 |
+
from transformers import AutoModelForAudioClassification
|
10 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
|
11 |
+
import types
|
12 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
13 |
+
import pandas as pd
|
14 |
+
import json
|
15 |
+
import numpy as np
|
16 |
+
from pathlib import Path
|
17 |
+
import transformers
|
18 |
+
import torch
|
19 |
+
import audmodel
|
20 |
+
import audiofile
|
21 |
+
import jiwer
|
22 |
+
# https://arxiv.org/pdf/2407.12229
|
23 |
+
# https://arxiv.org/pdf/2312.05187
|
24 |
+
# https://arxiv.org/abs/2407.05407
|
25 |
+
# https://arxiv.org/pdf/2408.06577
|
26 |
+
# https://arxiv.org/pdf/2309.07405
|
27 |
+
import msinference
|
28 |
+
import os
|
29 |
+
from random import shuffle
|
30 |
+
|
31 |
+
config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
|
32 |
+
config.dev = torch.device('cuda:0')
|
33 |
+
config.dev2 = torch.device('cuda:0')
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
LABELS = ['arousal', 'dominance', 'valence',
|
39 |
+
'Angry',
|
40 |
+
'Sad',
|
41 |
+
'Happy',
|
42 |
+
'Surprise',
|
43 |
+
'Fear',
|
44 |
+
'Disgust',
|
45 |
+
'Contempt',
|
46 |
+
'Neutral'
|
47 |
+
]
|
48 |
+
|
49 |
+
config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
|
50 |
+
config.dev = torch.device('cuda:0')
|
51 |
+
config.dev2 = torch.device('cuda:0')
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# https://arxiv.org/pdf/2407.12229
|
57 |
+
# https://arxiv.org/pdf/2312.05187
|
58 |
+
# https://arxiv.org/abs/2407.05407
|
59 |
+
# https://arxiv.org/pdf/2408.06577
|
60 |
+
# https://arxiv.org/pdf/2309.07405
|
61 |
+
|
62 |
+
|
63 |
+
def _infer(self, x):
|
64 |
+
'''x: (batch, audio-samples-16KHz)'''
|
65 |
+
x = (x + self.config.mean) / self.config.std # plus
|
66 |
+
x = self.ssl_model(x, attention_mask=None).last_hidden_state
|
67 |
+
# pool
|
68 |
+
h = self.pool_model.sap_linear(x).tanh()
|
69 |
+
w = torch.matmul(h, self.pool_model.attention)
|
70 |
+
w = w.softmax(1)
|
71 |
+
mu = (x * w).sum(1)
|
72 |
+
x = torch.cat(
|
73 |
+
[
|
74 |
+
mu,
|
75 |
+
((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
|
76 |
+
], 1)
|
77 |
+
return self.ser_model(x)
|
78 |
+
|
79 |
+
teacher_cat = AutoModelForAudioClassification.from_pretrained(
|
80 |
+
'3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes',
|
81 |
+
trust_remote_code=True # fun definitions see 3loi/SER-.. repo
|
82 |
+
).to(config.dev2).eval()
|
83 |
+
teacher_cat.forward = types.MethodType(_infer, teacher_cat)
|
84 |
+
|
85 |
+
|
86 |
+
# ===================[:]===================== Dawn
|
87 |
+
def _prenorm(x, attention_mask=None):
|
88 |
+
'''mean/var'''
|
89 |
+
if attention_mask is not None:
|
90 |
+
N = attention_mask.sum(1, keepdim=True) # here attn msk is unprocessed just the original input
|
91 |
+
x -= x.sum(1, keepdim=True) / N
|
92 |
+
var = (x * x).sum(1, keepdim=True) / N
|
93 |
+
|
94 |
+
else:
|
95 |
+
x -= x.mean(1, keepdim=True) # mean is an onnx operator reducemean saves some ops compared to casting integer N to float and the div
|
96 |
+
var = (x * x).mean(1, keepdim=True)
|
97 |
+
return x / torch.sqrt(var + 1e-7)
|
98 |
+
|
99 |
+
from torch import nn
|
100 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
|
101 |
+
class RegressionHead(nn.Module):
|
102 |
+
r"""Classification head."""
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
|
106 |
+
super().__init__()
|
107 |
+
|
108 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
109 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
110 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
111 |
+
|
112 |
+
def forward(self, features, **kwargs):
|
113 |
+
|
114 |
+
x = features
|
115 |
+
x = self.dropout(x)
|
116 |
+
x = self.dense(x)
|
117 |
+
x = torch.tanh(x)
|
118 |
+
x = self.dropout(x)
|
119 |
+
x = self.out_proj(x)
|
120 |
+
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class Dawn(Wav2Vec2PreTrainedModel):
|
125 |
+
r"""Speech emotion classifier."""
|
126 |
+
|
127 |
+
def __init__(self, config):
|
128 |
+
|
129 |
+
super().__init__(config)
|
130 |
+
|
131 |
+
self.config = config
|
132 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
133 |
+
self.classifier = RegressionHead(config)
|
134 |
+
self.init_weights()
|
135 |
+
|
136 |
+
def forward(
|
137 |
+
self,
|
138 |
+
input_values,
|
139 |
+
attention_mask=None,
|
140 |
+
):
|
141 |
+
x = _prenorm(input_values, attention_mask=attention_mask)
|
142 |
+
outputs = self.wav2vec2(x, attention_mask=attention_mask)
|
143 |
+
hidden_states = outputs[0]
|
144 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
145 |
+
logits = self.classifier(hidden_states)
|
146 |
+
return logits
|
147 |
+
# return {'hidden_states': hidden_states,
|
148 |
+
# 'logits': logits}
|
149 |
+
dawn = Dawn.from_pretrained('audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim').to(config.dev).eval()
|
150 |
+
# =======================================
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
torch_dtype = torch.float16 #if torch.cuda.is_available() else torch.float32
|
163 |
+
model_id = "openai/whisper-large-v3"
|
164 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
165 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
166 |
+
).to(config.dev)
|
167 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
168 |
+
_pipe = pipeline(
|
169 |
+
"automatic-speech-recognition",
|
170 |
+
model=model,
|
171 |
+
tokenizer=processor.tokenizer,
|
172 |
+
feature_extractor=processor.feature_extractor,
|
173 |
+
max_new_tokens=128,
|
174 |
+
chunk_length_s=30,
|
175 |
+
batch_size=16,
|
176 |
+
return_timestamps=True,
|
177 |
+
torch_dtype=torch_dtype,
|
178 |
+
device=config.dev,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
def process_function(x, sampling_rate, idx):
|
191 |
+
# x = x[None , :] ASaHSuFDCN
|
192 |
+
# {0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise',
|
193 |
+
# 4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'}
|
194 |
+
#tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]])
|
195 |
+
logits_cat = teacher_cat(torch.from_numpy(x).to(config.dev)).softmax(1)
|
196 |
+
logits_adv = dawn(torch.from_numpy(x).to(config.dev))
|
197 |
+
|
198 |
+
out = torch.cat([logits_adv,
|
199 |
+
logits_cat],
|
200 |
+
1).cpu().detach().numpy()
|
201 |
+
# print(out.shape)
|
202 |
+
return out[0, :]
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
def load_speech(split=None):
|
207 |
+
DB = [
|
208 |
+
# [dataset, version, table, has_timdeltas_or_is_full_wavfile]
|
209 |
+
# ['crema-d', '1.1.1', 'emotion.voice.test', False],
|
210 |
+
#['librispeech', '3.1.0', 'test-clean', False],
|
211 |
+
['emodb', '1.2.0', 'emotion.categories.train.gold_standard', False],
|
212 |
+
# ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
|
213 |
+
# ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
|
214 |
+
# ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
|
215 |
+
# ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False], # tandalone bucket because it has gt labels?
|
216 |
+
# ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
|
217 |
+
# ['casia', None, 'emotion.categories.gold_standard', False],
|
218 |
+
# ['switchboard-1', None, 'sentiment', True],
|
219 |
+
# ['swiss-parliament', None, 'segments', True],
|
220 |
+
# ['argentinian-parliament', None, 'segments', True],
|
221 |
+
# ['austrian-parliament', None, 'segments', True],
|
222 |
+
# #'german', --> bundestag
|
223 |
+
# ['brazilian-parliament', None, 'segments', True],
|
224 |
+
# ['mexican-parliament', None, 'segments', True],
|
225 |
+
# ['portuguese-parliament', None, 'segments', True],
|
226 |
+
# ['spanish-parliament', None, 'segments', True],
|
227 |
+
# ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
|
228 |
+
# peoples-speech slow
|
229 |
+
# ['peoples-speech', None, 'train-initial', False]
|
230 |
+
]
|
231 |
+
|
232 |
+
output_list = []
|
233 |
+
for database_name, ver, table, has_timedeltas in DB:
|
234 |
+
|
235 |
+
a = audb.load(database_name,
|
236 |
+
sampling_rate=16000,
|
237 |
+
format='wav',
|
238 |
+
mixdown=True,
|
239 |
+
version=ver,
|
240 |
+
cache_root='/cache/audb/')
|
241 |
+
a = a[table].get()
|
242 |
+
if has_timedeltas:
|
243 |
+
print(f'{has_timedeltas=}')
|
244 |
+
# a = a.reset_index()[['file', 'start', 'end']]
|
245 |
+
# output_list += [[*t] for t
|
246 |
+
# in zip(a.file.values, a.start.dt.total_seconds().values, a.end.dt.total_seconds().values)]
|
247 |
+
else:
|
248 |
+
output_list += [f for f in a.index] # use file (no timedeltas)
|
249 |
+
return output_list
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
natural_wav_paths = load_speech()
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
with open('harvard.json', 'r') as f:
|
270 |
+
harvard_individual_sentences = json.load(f)['sentences']
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
synthetic_wav_paths = ['./enslow/' + i for i in
|
275 |
+
os.listdir('./enslow/')]
|
276 |
+
synthetic_wav_paths_4x = ['./style_vector_v2/' + i for i in
|
277 |
+
os.listdir('./style_vector_v2/')]
|
278 |
+
synthetic_wav_paths_foreign = ['./mimic3_foreign/' + i for i in os.listdir('./mimic3_foreign/') if 'en_U' not in i]
|
279 |
+
synthetic_wav_paths_foreign_4x = ['./mimic3_foreign_4x/' + i for i in os.listdir('./mimic3_foreign_4x/') if 'en_U' not in i] # very short segments
|
280 |
+
|
281 |
+
# filter very short styles
|
282 |
+
synthetic_wav_paths_foreign = [i for i in synthetic_wav_paths_foreign if audiofile.duration(i) > 2]
|
283 |
+
synthetic_wav_paths_foreign_4x = [i for i in synthetic_wav_paths_foreign_4x if audiofile.duration(i) > 2]
|
284 |
+
synthetic_wav_paths = [i for i in synthetic_wav_paths if audiofile.duration(i) > 2]
|
285 |
+
synthetic_wav_pathsn_4x = [i for i in synthetic_wav_paths_4x if audiofile.duration(i) > 2]
|
286 |
+
|
287 |
+
shuffle(synthetic_wav_paths_foreign_4x)
|
288 |
+
shuffle(synthetic_wav_paths_foreign)
|
289 |
+
shuffle(synthetic_wav_paths)
|
290 |
+
shuffle(synthetic_wav_paths_4x)
|
291 |
+
print(len(synthetic_wav_paths_foreign_4x), len(synthetic_wav_paths_foreign),
|
292 |
+
len(synthetic_wav_paths), len(synthetic_wav_paths_4x)) # 134 204 134 204
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
for audio_prompt in ['english',
|
297 |
+
'english_4x',
|
298 |
+
'human',
|
299 |
+
'foreign',
|
300 |
+
'foreign_4x']: # each of these creates a separate pkl - so outer for
|
301 |
+
#
|
302 |
+
data = np.zeros((767, len(LABELS)*2 + 2)) # 720 x LABELS-prompt & LABELS-stts2 & cer-prompt & cer-stts2
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
#
|
307 |
+
|
308 |
+
OUT_FILE = f'{audio_prompt}_analytic.pkl'
|
309 |
+
if not os.path.isfile(OUT_FILE):
|
310 |
+
ix = 0
|
311 |
+
for list_of_10 in harvard_individual_sentences[:10004]:
|
312 |
+
# long_sentence = ' '.join(list_of_10['sentences'])
|
313 |
+
# harvard.append(long_sentence.replace('.', ' '))
|
314 |
+
for text in list_of_10['sentences']:
|
315 |
+
if audio_prompt == 'english':
|
316 |
+
_p = synthetic_wav_paths[ix % len(synthetic_wav_paths)]
|
317 |
+
# 134
|
318 |
+
style_vec = msinference.compute_style(_p)
|
319 |
+
elif audio_prompt == 'english_4x':
|
320 |
+
_p = synthetic_wav_paths_4x[ix % len(synthetic_wav_paths_4x)]
|
321 |
+
# 134]
|
322 |
+
style_vec = msinference.compute_style(_p)
|
323 |
+
elif audio_prompt == 'human':
|
324 |
+
_p = natural_wav_paths[ix % len(natural_wav_paths)]
|
325 |
+
# ?
|
326 |
+
style_vec = msinference.compute_style(_p)
|
327 |
+
elif audio_prompt == 'foreign':
|
328 |
+
_p = synthetic_wav_paths_foreign[ix % len(synthetic_wav_paths_foreign)]
|
329 |
+
# 204 some short styles are discarded ~ 1180
|
330 |
+
style_vec = msinference.compute_style(_p)
|
331 |
+
elif audio_prompt == 'foreign_4x':
|
332 |
+
_p = synthetic_wav_paths_foreign_4x[ix % len(synthetic_wav_paths_foreign_4x)]
|
333 |
+
# 174
|
334 |
+
style_vec = msinference.compute_style(_p)
|
335 |
+
else:
|
336 |
+
print('unknonw list of style vector')
|
337 |
+
|
338 |
+
x = msinference.inference(text,
|
339 |
+
style_vec,
|
340 |
+
alpha=0.3,
|
341 |
+
beta=0.7,
|
342 |
+
diffusion_steps=7,
|
343 |
+
embedding_scale=1)
|
344 |
+
x = audresample.resample(x, 24000, 16000)
|
345 |
+
|
346 |
+
|
347 |
+
_st, fsr = audiofile.read(_p)
|
348 |
+
_st = audresample.resample(_st, fsr, 16000)
|
349 |
+
print(_st.shape, x.shape)
|
350 |
+
|
351 |
+
emotion_of_prompt = process_function(_st, 16000, None)
|
352 |
+
emotion_of_out = process_function(x, 16000, None)
|
353 |
+
data[ix, :11] = emotion_of_prompt
|
354 |
+
data[ix, 11:22] = emotion_of_out
|
355 |
+
|
356 |
+
# 2 last columns is cer-prompt cer-styletts2
|
357 |
+
|
358 |
+
transcription_prompt = _pipe(_st[0])
|
359 |
+
transcription_styletts2 = _pipe(x[0]) # allow singleton for EMO process func
|
360 |
+
# print(len(emotion_of_prompt + emotion_of_out), ix, text)
|
361 |
+
print(transcription_prompt, transcription_styletts2)
|
362 |
+
|
363 |
+
data[ix, 22] = jiwer.cer('Sweet dreams are made of this. I travel the world and the seven seas.',
|
364 |
+
transcription_prompt['text'])
|
365 |
+
|
366 |
+
data[ix, 23] = jiwer.cer(text,
|
367 |
+
transcription_styletts2['text'])
|
368 |
+
print(data[ix, :])
|
369 |
+
|
370 |
+
ix += 1
|
371 |
+
|
372 |
+
df = pd.DataFrame(data, columns=['prompt-' + i for i in LABELS] + ['styletts2-' + i for i in LABELS] + ['cer-prompt', 'cer-styletts2'])
|
373 |
+
df.to_pickle(OUT_FILE)
|
374 |
+
else:
|
375 |
+
|
376 |
+
df = pd.read_pickle(OUT_FILE)
|
377 |
+
print('\nALREADY EXISTS\n{df}')
|
378 |
+
# From the pickle we should also run cer and whisper on every prompt
|