debug determinism - vits - duration predictor
Browse files- Modules/vits/models.py +3 -29
- msinference.py +1 -1
Modules/vits/models.py
CHANGED
@@ -56,37 +56,11 @@ class StochasticDurationPredictor(nn.Module):
|
|
56 |
x = self.proj(x) * x_mask
|
57 |
|
58 |
if not reverse:
|
59 |
-
|
60 |
-
assert w is not None
|
61 |
-
|
62 |
-
logdet_tot_q = 0
|
63 |
-
h_w = self.post_pre(w)
|
64 |
-
h_w = self.post_convs(h_w, x_mask)
|
65 |
-
h_w = self.post_proj(h_w) * x_mask
|
66 |
-
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
67 |
-
z_q = e_q
|
68 |
-
for flow in self.post_flows:
|
69 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
70 |
-
logdet_tot_q += logdet_q
|
71 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
72 |
-
u = torch.sigmoid(z_u) * x_mask
|
73 |
-
z0 = (w - u) * x_mask
|
74 |
-
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
75 |
-
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
76 |
-
|
77 |
-
logdet_tot = 0
|
78 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
79 |
-
logdet_tot += logdet
|
80 |
-
z = torch.cat([z0, z1], 1)
|
81 |
-
for flow in flows:
|
82 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
83 |
-
logdet_tot = logdet_tot + logdet
|
84 |
-
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
85 |
-
return nll + logq # [b]
|
86 |
else:
|
87 |
flows = list(reversed(self.flows))
|
88 |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
89 |
-
z = torch.
|
90 |
for flow in flows:
|
91 |
z = flow(z, x_mask, g=x, reverse=reverse)
|
92 |
z0, z1 = torch.split(z, [1, 1], 1)
|
@@ -316,7 +290,7 @@ class SynthesizerTrn(nn.Module):
|
|
316 |
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
317 |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
318 |
|
319 |
-
z_p = m_p + torch.
|
320 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
321 |
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
322 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
|
|
56 |
x = self.proj(x) * x_mask
|
57 |
|
58 |
if not reverse:
|
59 |
+
raise ValueError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
else:
|
61 |
flows = list(reversed(self.flows))
|
62 |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
63 |
+
z = torch.zeros(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) #* noise_scale
|
64 |
for flow in flows:
|
65 |
z = flow(z, x_mask, g=x, reverse=reverse)
|
66 |
z0, z1 = torch.split(z, [1, 1], 1)
|
|
|
290 |
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
291 |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
292 |
|
293 |
+
z_p = m_p + torch.zeros_like(m_p) * torch.exp(logs_p)#* noise_scale
|
294 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
295 |
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
296 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
msinference.py
CHANGED
@@ -468,7 +468,7 @@ def foreign(text=None, # list of text
|
|
468 |
net_g.infer(
|
469 |
x_tst,
|
470 |
x_tst_lengths,
|
471 |
-
noise_scale=0.667,
|
472 |
noise_scale_w=1, #0, #0.8,
|
473 |
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
|
474 |
)
|
|
|
468 |
net_g.infer(
|
469 |
x_tst,
|
470 |
x_tst_lengths,
|
471 |
+
noise_scale=0, #0.667,
|
472 |
noise_scale_w=1, #0, #0.8,
|
473 |
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
|
474 |
)
|