Dionyssos commited on
Commit
fda2aa0
·
1 Parent(s): a940ee7
Files changed (3) hide show
  1. app.py +187 -0
  2. tts_harvard.py +45 -82
  3. visualize_tts_plesantness.py +6 -6
app.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ INTROTXT = """# StyleTTS 2
2
+
3
+ [Paper](https://arxiv.org/abs/2306.07691) - [Samples](https://styletts2.github.io/) - [Code](https://github.com/yl4579/StyleTTS2) - [Discord](https://discord.gg/ha8sxdG2K4)
4
+
5
+ A free demo of StyleTTS 2. **I am not affiliated with the StyleTTS 2 Authors.**
6
+
7
+ **Before using this demo, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.**
8
+
9
+ Is there a long queue on this space? Duplicate it and add a more powerful GPU to skip the wait! **Note: Thank you to Hugging Face for their generous GPU grant program!**
10
+
11
+ **NOTE: StyleTTS 2 does better on longer texts.** For example, making it say "hi" will produce a lower-quality result than making it say a longer phrase.
12
+
13
+ **NOTE: StyleTTS 2 is _currently_ English-only. Join the Discord for updates on multilingual training.**
14
+ """
15
+ import gradio as gr
16
+ import styletts2importable
17
+ import ljspeechimportable
18
+ import torch
19
+ import os
20
+ from txtsplit import txtsplit
21
+ import numpy as np
22
+ import pickle
23
+ theme = gr.themes.Base(
24
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
25
+ )
26
+ voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
27
+ voices = {}
28
+ import phonemizer
29
+ global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
30
+ # todo: cache computed style, load using pickle
31
+ # if os.path.exists('voices.pkl'):
32
+ # with open('voices.pkl', 'rb') as f:
33
+ # voices = pickle.load(f)
34
+ # else:
35
+ for v in voicelist:
36
+ voices[v] = styletts2importable.compute_style(f'voices/{v}.wav')
37
+ # def synthesize(text, voice, multispeakersteps):
38
+ # if text.strip() == "":
39
+ # raise gr.Error("You must enter some text")
40
+ # # if len(global_phonemizer.phonemize([text])) > 300:
41
+ # if len(text) > 300:
42
+ # raise gr.Error("Text must be under 300 characters")
43
+ # v = voice.lower()
44
+ # # return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1))
45
+ # return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=multispeakersteps, embedding_scale=1))
46
+ if not torch.cuda.is_available(): INTROTXT += "\n\n### You are on a CPU-only system, inference will be much slower.\n\nYou can use the [online demo](https://huggingface.co/spaces/styletts2/styletts2) for fast inference."
47
+ def synthesize(text, voice, lngsteps, password, progress=gr.Progress()):
48
+ if text.strip() == "":
49
+ raise gr.Error("You must enter some text")
50
+ if len(text) > 50000:
51
+ raise gr.Error("Text must be <50k characters")
52
+ print("*** saying ***")
53
+ print(text)
54
+ print("*** end ***")
55
+ texts = txtsplit(text)
56
+ v = voice.lower()
57
+ audios = []
58
+ for t in progress.tqdm(texts):
59
+ print(t)
60
+ audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1))
61
+ return (24000, np.concatenate(audios))
62
+ # def longsynthesize(text, voice, lngsteps, password, progress=gr.Progress()):
63
+ # if password == os.environ['ACCESS_CODE']:
64
+ # if text.strip() == "":
65
+ # raise gr.Error("You must enter some text")
66
+ # if lngsteps > 25:
67
+ # raise gr.Error("Max 25 steps")
68
+ # if lngsteps < 5:
69
+ # raise gr.Error("Min 5 steps")
70
+ # texts = split_and_recombine_text(text)
71
+ # v = voice.lower()
72
+ # audios = []
73
+ # for t in progress.tqdm(texts):
74
+ # audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1))
75
+ # return (24000, np.concatenate(audios))
76
+ # else:
77
+ # raise gr.Error('Wrong access code')
78
+ def clsynthesize(text, voice, vcsteps, embscale, alpha, beta, progress=gr.Progress()):
79
+ # if text.strip() == "":
80
+ # raise gr.Error("You must enter some text")
81
+ # # if global_phonemizer.phonemize([text]) > 300:
82
+ # if len(text) > 400:
83
+ # raise gr.Error("Text must be under 400 characters")
84
+ # # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=20, embedding_scale=1))
85
+ # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=vcsteps, embedding_scale=1))
86
+ if text.strip() == "":
87
+ raise gr.Error("You must enter some text")
88
+ if len(text) > 50000:
89
+ raise gr.Error("Text must be <50k characters")
90
+ if embscale > 1.3 and len(text) < 20:
91
+ gr.Warning("WARNING: You entered short text, you may get static!")
92
+ print("*** saying ***")
93
+ print(text)
94
+ print("*** end ***")
95
+ texts = txtsplit(text)
96
+ audios = []
97
+ # vs = styletts2importable.compute_style(voice)
98
+ vs = styletts2importable.compute_style(voice)
99
+ # print(vs)
100
+ for t in progress.tqdm(texts):
101
+ audios.append(styletts2importable.inference(t, vs, alpha=alpha, beta=beta, diffusion_steps=vcsteps, embedding_scale=embscale))
102
+ # audios.append(styletts2importable.inference(t, vs, diffusion_steps=10, alpha=0.3, beta=0.7, embedding_scale=5))
103
+ return (24000, np.concatenate(audios))
104
+ def ljsynthesize(text, steps, progress=gr.Progress()):
105
+ # if text.strip() == "":
106
+ # raise gr.Error("You must enter some text")
107
+ # # if global_phonemizer.phonemize([text]) > 300:
108
+ # if len(text) > 400:
109
+ # raise gr.Error("Text must be under 400 characters")
110
+ noise = torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu')
111
+ # return (24000, ljspeechimportable.inference(text, noise, diffusion_steps=7, embedding_scale=1))
112
+ if text.strip() == "":
113
+ raise gr.Error("You must enter some text")
114
+ if len(text) > 150000:
115
+ raise gr.Error("Text must be <150k characters")
116
+ print("*** saying ***")
117
+ print(text)
118
+ print("*** end ***")
119
+ texts = txtsplit(text)
120
+ audios = []
121
+ for t in progress.tqdm(texts):
122
+ audios.append(ljspeechimportable.inference(t, noise, diffusion_steps=steps, embedding_scale=1))
123
+ return (24000, np.concatenate(audios))
124
+
125
+
126
+ with gr.Blocks() as vctk:
127
+ with gr.Row():
128
+ with gr.Column(scale=1):
129
+ inp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
130
+ voice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-2', interactive=True)
131
+ multispeakersteps = gr.Slider(minimum=3, maximum=15, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
132
+ # use_gruut = gr.Checkbox(label="Use alternate phonemizer (Gruut) - Experimental")
133
+ with gr.Column(scale=1):
134
+ btn = gr.Button("Synthesize", variant="primary")
135
+ audio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
136
+ btn.click(synthesize, inputs=[inp, voice, multispeakersteps], outputs=[audio], concurrency_limit=4)
137
+ with gr.Blocks() as clone:
138
+ with gr.Row():
139
+ with gr.Column(scale=1):
140
+ clinp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
141
+ clvoice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=300, waveform_options={'waveform_progress_color': '#3C82F6'})
142
+ vcsteps = gr.Slider(minimum=3, maximum=20, value=20, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
143
+ embscale = gr.Slider(minimum=1, maximum=10, value=1, step=0.1, label="Embedding Scale (READ WARNING BELOW)", info="Defaults to 1. WARNING: If you set this too high and generate text that's too short you will get static!", interactive=True)
144
+ alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3", interactive=True)
145
+ beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7", interactive=True)
146
+ with gr.Column(scale=1):
147
+ clbtn = gr.Button("Synthesize", variant="primary")
148
+ claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
149
+ clbtn.click(clsynthesize, inputs=[clinp, clvoice, vcsteps, embscale, alpha, beta], outputs=[claudio], concurrency_limit=4)
150
+ # with gr.Blocks() as longText:
151
+ # with gr.Row():
152
+ # with gr.Column(scale=1):
153
+ # lnginp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
154
+ # lngvoice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-1', interactive=True)
155
+ # lngsteps = gr.Slider(minimum=5, maximum=25, value=10, step=1, label="Diffusion Steps", info="Higher = better quality, but slower", interactive=True)
156
+ # lngpwd = gr.Textbox(label="Access code", info="This feature is in beta. You need an access code to use it as it uses more resources and we would like to prevent abuse")
157
+ # with gr.Column(scale=1):
158
+ # lngbtn = gr.Button("Synthesize", variant="primary")
159
+ # lngaudio = gr.Audio(interactive=False, label="Synthesized Audio")
160
+ # lngbtn.click(longsynthesize, inputs=[lnginp, lngvoice, lngsteps, lngpwd], outputs=[lngaudio], concurrency_limit=4)
161
+ with gr.Blocks() as lj:
162
+ with gr.Row():
163
+ with gr.Column(scale=1):
164
+ ljinp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
165
+ ljsteps = gr.Slider(minimum=3, maximum=20, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
166
+ with gr.Column(scale=1):
167
+ ljbtn = gr.Button("Synthesize", variant="primary")
168
+ ljaudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
169
+ ljbtn.click(ljsynthesize, inputs=[ljinp, ljsteps], outputs=[ljaudio], concurrency_limit=4)
170
+ with gr.Blocks(title="StyleTTS 2", css="footer{display:none !important}", theme=theme) as demo:
171
+ gr.Markdown(INTROTXT)
172
+ gr.DuplicateButton("Duplicate Space")
173
+ # gr.TabbedInterface([vctk, clone, lj, longText], ['Multi-Voice', 'Voice Cloning', 'LJSpeech', 'Long Text [Beta]'])
174
+ gr.TabbedInterface([vctk, clone, lj], ['Multi-Voice', 'Voice Cloning', 'LJSpeech', 'Long Text [Beta]'])
175
+ gr.Markdown("""
176
+ Demo by [mrfakename](https://twitter.com/realmrfakename). I am not affiliated with the StyleTTS 2 authors.
177
+
178
+ Run this demo locally using Docker:
179
+
180
+ ```bash
181
+ docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/styletts2-styletts2:latest python app.py
182
+ ```
183
+ """) # Please do not remove this line.
184
+ if __name__ == "__main__":
185
+ # demo.queue(api_open=False, max_size=15).launch(show_api=False)
186
+ demo.queue(api_open=False, max_size=15).launch(show_api=False)
187
+
tts_harvard.py CHANGED
@@ -1,48 +1,42 @@
1
- # Synthesize all Harvard Lists 77x lists of 10x sentences to single .wav ----- NEEDS TO BE RUN from https://github.com/audeering/shift/
2
  #
3
- # 1. using mimic3 style
4
- # Folder: 'prompt_mimic3/'
5
- # 2. using mimic3 4x accelerated style
6
- # Folder: 'prompt_mimic3speed/'
7
- # 3. using crema-d style
8
- # Folder: 'prompt_human/'
9
  #
10
- # WAVS used from tts_paper_plot.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  import soundfile
13
  import json
14
  import numpy as np
15
  import audb
16
  from pathlib import Path
17
-
18
  LABELS = ['arousal', 'dominance', 'valence']
19
 
20
 
21
-
22
-
23
- def load_speech(split=None):
24
  DB = [
25
  # [dataset, version, table, has_timdeltas_or_is_full_wavfile]
26
- ['crema-d', '1.1.1', 'emotion.voice.test', False],
27
- # ['emodb', '1.2.0', 'emotion.categories.train.gold_standard', False],
28
- # ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
29
- # ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
30
- # ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
31
- # ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False], # tandalone bucket because it has gt labels?
32
- # ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
33
- # ['casia', None, 'emotion.categories.gold_standard', False],
34
- # ['switchboard-1', None, 'sentiment', True],
35
- # ['swiss-parliament', None, 'segments', True],
36
- # ['argentinian-parliament', None, 'segments', True],
37
- # ['austrian-parliament', None, 'segments', True],
38
- # #'german', --> bundestag
39
- # ['brazilian-parliament', None, 'segments', True],
40
- # ['mexican-parliament', None, 'segments', True],
41
- # ['portuguese-parliament', None, 'segments', True],
42
- # ['spanish-parliament', None, 'segments', True],
43
- # ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
44
- # peoples-speech slow
45
- # ['peoples-speech', None, 'train-initial', False]
46
  ]
47
 
48
  output_list = []
@@ -64,65 +58,38 @@ def load_speech(split=None):
64
  output_list += [f for f in a.index] # use file (no timedeltas)
65
  return output_list
66
 
67
-
68
-
69
-
70
-
71
- # Generate 77 wavs
72
-
73
-
74
-
75
-
76
- with open('voices.json', 'r') as f:
77
- df = json.load(f)['voices']
78
- voice_names = [v['voice'] for k,v in df.items()]
79
- synthetic_wav_paths = []
80
- synthetic_wav_paths_AFFECT = []
81
- for voice in voice_names:
82
 
83
- synthetic_wav_paths.append(
84
- 'assets/wavs/style_vector/' + voice.replace('/', '_').replace('#', '_').replace(
85
- 'cmu-arctic', 'cmu_arctic').replace('_low', '') + '.wav')
86
- synthetic_wav_paths_AFFECT.append(
87
- 'assets/wavs/style_vector_v2/' + voice.replace('/', '_').replace('#', '_').replace(
88
- 'cmu-arctic', 'cmu_arctic').replace('_low', '') + '.wav')
89
-
90
 
91
- print(len(synthetic_wav_paths))
92
-
93
-
94
- natural_wav_paths = load_speech()
95
 
96
 
97
  # SYNTHESIZE mimic mimicx4 crema-d
98
  import msinference
99
-
100
 
101
  with open('harvard.json', 'r') as f:
102
  harvard_individual_sentences = json.load(f)['sentences']
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
-
106
-
107
-
108
- for audio_prompt in ['mimic3', 'mimic3_speed', 'human']:
109
  total_audio = []
110
  ix = 0
111
- for list_of_10 in harvard_individual_sentences:
112
  # long_sentence = ' '.join(list_of_10['sentences'])
113
  # harvard.append(long_sentence.replace('.', ' '))
114
  for text in list_of_10['sentences']:
115
- if audio_prompt == 'mimic3':
116
- style_vec = msinference.compute_style(
117
- synthetic_wav_paths[ix % 134])
118
- elif audio_prompt == 'mimic3_speed':
119
- style_vec = msinference.compute_style(
120
- synthetic_wav_paths_AFFECT[ix % 134])
121
- elif audio_prompt == 'human':
122
- style_vec = msinference.compute_style(
123
- natural_wav_paths[ix % len(natural_wav_paths)])
124
- else:
125
- print('unknonw list of style vecto')
126
  print(ix, text)
127
  ix += 1
128
  x = msinference.inference(text,
@@ -133,10 +100,6 @@ for audio_prompt in ['mimic3', 'mimic3_speed', 'human']:
133
  embedding_scale=1)
134
 
135
  total_audio.append(x)
136
- # concat before write
137
- # -- for 10x sentenctes
138
- print('_____________________')
139
- # -- for 77x lists
140
- total_audio = np.concatenate(total_audio)
141
- soundfile.write(f'{audio_prompt}_770.wav', total_audio, 24000)
142
- print(f'{audio_prompt}_full_770.wav')
 
1
+ # Synthesize all Harvard Lists - 767 sentences as single .wav
2
  #
3
+ # 1.
 
 
 
 
 
4
  #
5
+ # './prompt_mimic3_english/'
6
+ #
7
+ # 2.
8
+ #
9
+ # './prompt_mimic3_english_4x/'
10
+ #
11
+ # 3.
12
+ #
13
+ # './prompt_human/'
14
+ #
15
+ # 4.
16
+ #
17
+ # './prompt_mimic3_foreign/'
18
+ #
19
+ # 5.
20
+ #
21
+ # './prompt_mimic3_foreign_4x/
22
+ #
23
+ #
24
+ # ----> THE .wavs will be used for visualisation
25
 
26
  import soundfile
27
  import json
28
  import numpy as np
29
  import audb
30
  from pathlib import Path
31
+ import os
32
  LABELS = ['arousal', 'dominance', 'valence']
33
 
34
 
35
+ def load_human_speech(split=None):
 
 
36
  DB = [
37
  # [dataset, version, table, has_timdeltas_or_is_full_wavfile]
38
+ # ['crema-d', '1.1.1', 'emotion.voice.test', False],
39
+ ['emodb', '1.2.0', 'emotion.categories.train.gold_standard', False],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ]
41
 
42
  output_list = []
 
58
  output_list += [f for f in a.index] # use file (no timedeltas)
59
  return output_list
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
62
 
 
 
 
 
63
 
64
 
65
  # SYNTHESIZE mimic mimicx4 crema-d
66
  import msinference
67
+ prompt_paths = {}
68
 
69
  with open('harvard.json', 'r') as f:
70
  harvard_individual_sentences = json.load(f)['sentences']
71
 
72
+ for audio_prompt in [#'mimic3_english',
73
+ #'mimic3_english_4x',
74
+ 'human',
75
+ 'mimic3_foreign',
76
+ 'mimic3_foreign_4x']:
77
+
78
+ if audio_prompt == 'human':
79
+ prompt_paths = load_human_speech() # better emodb ?
80
+ else:
81
+ prompt_dir = '/data/dkounadis/artificial-styletts2/' + audio_prompt + '/'
82
+ prompt_paths = [prompt_dir + f for f in os.listdir(prompt_dir)]
83
+ prompt_paths = prompt_paths[:10]
84
+ print(prompt_paths,'\n\n__________')
85
 
 
 
 
 
86
  total_audio = []
87
  ix = 0
88
+ for list_of_10 in harvard_individual_sentences[:1]:
89
  # long_sentence = ' '.join(list_of_10['sentences'])
90
  # harvard.append(long_sentence.replace('.', ' '))
91
  for text in list_of_10['sentences']:
92
+ style_vec = msinference.compute_style(prompt_paths[ix % len(prompt_paths)])
 
 
 
 
 
 
 
 
 
 
93
  print(ix, text)
94
  ix += 1
95
  x = msinference.inference(text,
 
100
  embedding_scale=1)
101
 
102
  total_audio.append(x)
103
+ total_audio = np.concatenate(total_audio) # -- concat 77x lists
104
+ soundfile.write(f'{audio_prompt}_767_5.wav', total_audio, 24000)
105
+ print(f'{audio_prompt}_767_5.wav')
 
 
 
 
visualize_tts_plesantness.py CHANGED
@@ -81,12 +81,12 @@ def _sigmoid(x):
81
 
82
  # for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
83
  for long_audio in [
84
- # 'mimic3.wav',
85
- # 'mimic3_speedup.wav',
86
- 'human_770.wav', # 'mimic3_all_77.wav', #
87
- 'mimic3_770.wav',
88
- 'mimic3_speed_770.wav'
89
- ]:
90
  file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
91
  if not os.path.exists(file_interface):
92
 
 
81
 
82
  # for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
83
  for long_audio in [
84
+ 'mimic3_english_767_5.wav',
85
+ 'mimic3_english_4x_767_5.wav',
86
+ 'human_767_5.wav',
87
+ 'mimic3_foregin_767_5.wav',
88
+ 'mimic3_foreign_4x_767_5.wav'
89
+ ]:
90
  file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
91
  if not os.path.exists(file_interface):
92