File size: 5,387 Bytes
c0939f2
 
 
 
 
 
 
 
 
 
 
 
557ea43
c0939f2
 
 
 
 
 
81c840b
 
e490a99
81c840b
557ea43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0939f2
fccab7b
 
 
 
 
 
 
 
8c08e4d
334c302
fccab7b
 
 
 
 
 
 
 
 
 
 
 
 
0b502c4
fccab7b
98bef34
a43c837
4154380
4b3a97a
fccab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154380
 
fccab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0939f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: mit
datasets:
- dleemiller/wiki-sim
- sentence-transformers/stsb
language:
- en
metrics:
- spearmanr
- pearsonr
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: text-classification
library_name: sentence-transformers
tags:
- cross-encoder
- modernbert
- sts
- stsb
- stsbenchmark-sts
model-index:
- name: CrossEncoder based on answerdotai/ModernBERT-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.9162245947821821
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9121555789491528
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.9260833551026787
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9236030687487745
      name: Spearman Cosine
---
# ModernBERT Cross-Encoder: Semantic Similarity (STS)

Cross encoders are high performing encoder models that compare two texts and output a 0-1 score.
I've found the `cross-encoders/roberta-large-stsb` model to be very useful in creating evaluators for LLM outputs.
They're simple to use, fast and very accurate.

Like many people, I was excited about the architecture and training uplift from the ModernBERT architecture (`answerdotai/ModernBERT-base`).
So I've applied it to the stsb cross encoder, which is a very handy model. Additionally, I've added
pretraining from a much larger semi-synthetic dataset `dleemiller/wiki-sim` that targets this kind of objective.
The inference performance efficiency, expanded context and simplicity make this a really nice platform as an evaluator model.

---

## Features
- **High performing:** Achieves **Pearson: 0.9162** and **Spearman: 0.9122** on the STS-Benchmark test set.
- **Efficient architecture:** Based on the ModernBERT-base design (149M parameters), offering faster inference speeds.
- **Extended context length:** Processes sequences up to 8192 tokens, great for LLM output evals.
- **Diversified training:** Pretrained on `dleemiller/wiki-sim` and fine-tuned on `sentence-transformers/stsb`.

---

## Performance

| Model                          | STS-B Test Pearson | STS-B Test Spearman | Context Length | Parameters | Speed  |
|--------------------------------|--------------------|---------------------|----------------|------------|---------|
| `ModernCE-large-sts`           | **0.9256**         | **0.9215**          | **8192**       | 395M       | **Medium** |
| `ModernCE-base-sts`            | **0.9162**         | **0.9122**          | **8192**       | 149M       | **Fast** |
| `stsb-roberta-large`           | 0.9147            | -              | 512            | 355M       | Slow    |
| `stsb-distilroberta-base`      | 0.8792            | -              | 512            | 82M        | Fast    |


---

## Usage

To use ModernCE for semantic similarity tasks, you can load the model with the Hugging Face `sentence-transformers` library:

```python
from sentence_transformers import CrossEncoder

# Load ModernCE model
model = CrossEncoder("dleemiller/ModernCE-base-sts")

# Predict similarity scores for sentence pairs
sentence_pairs = [
    ("It's a wonderful day outside.", "It's so sunny today!"),
    ("It's a wonderful day outside.", "He drove to work earlier."),
]
scores = model.predict(sentence_pairs)

print(scores)  # Outputs: array([0.9184, 0.0123], dtype=float32)
```

### Output
The model returns similarity scores in the range `[0, 1]`, where higher scores indicate stronger semantic similarity.

---

## Training Details

### Pretraining
The model was pretrained on the `pair-score-sampled` subset of the [`dleemiller/wiki-sim`](https://huggingface.co/datasets/dleemiller/wiki-sim) dataset. This dataset provides diverse sentence pairs with semantic similarity scores, helping the model build a robust understanding of relationships between sentences.
- **Classifier Dropout:** a somewhat large classifier dropout of 0.3, to reduce overreliance on teacher scores.
- **Objective:** STS-B scores from `cross-encoder/stsb-roberta-large`.

### Fine-Tuning
Fine-tuning was performed on the [`sentence-transformers/stsb`](https://huggingface.co/datasets/sentence-transformers/stsb) dataset.

### Validation Results
The model achieved the following test set performance after fine-tuning:
- **Pearson Correlation:** 0.9162
- **Spearman Correlation:** 0.9122

---

## Model Card

- **Architecture:** ModernBERT-base
- **Tokenizer:** Custom tokenizer trained with modern techniques for long-context handling.
- **Pretraining Data:** `dleemiller/wiki-sim (pair-score-sampled)`
- **Fine-Tuning Data:** `sentence-transformers/stsb`

---

## Thank You

Thanks to the AnswerAI team for providing the ModernBERT models, and the Sentence Transformers team for their leadership in transformer encoder models.

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{moderncestsb2025,
  author = {Miller, D. Lee},
  title = {ModernCE STS: An STS cross encoder model},
  year = {2025},
  publisher = {Hugging Face Hub},
  url = {https://huggingface.co/dleemiller/ModernCE-base-sts},
}
```

---

## License

This model is licensed under the [MIT License](LICENSE).