dmlls commited on
Commit
4dfaede
·
1 Parent(s): caedd07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -2
README.md CHANGED
@@ -1,6 +1,34 @@
1
  ---
 
2
  tags:
3
- - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model-index:
5
  - name: all-mpnet-base-v2-negation
6
  results:
@@ -733,4 +761,98 @@ model-index:
733
  value: 84.77197321507954
734
  - type: max_f1
735
  value: 76.91440595175472
736
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ language: en
8
+ license: apache-2.0
9
+ datasets:
10
+ - s2orc
11
+ - flax-sentence-embeddings/stackexchange_xml
12
+ - ms_marco
13
+ - gooaq
14
+ - yahoo_answers_topics
15
+ - code_search_net
16
+ - search_qa
17
+ - eli5
18
+ - snli
19
+ - multi_nli
20
+ - wikihow
21
+ - natural_questions
22
+ - trivia_qa
23
+ - embedding-data/sentence-compression
24
+ - embedding-data/flickr30k-captions
25
+ - embedding-data/altlex
26
+ - embedding-data/simple-wiki
27
+ - embedding-data/QQP
28
+ - embedding-data/SPECTER
29
+ - embedding-data/PAQ_pairs
30
+ - embedding-data/WikiAnswers
31
+ - tum-nlp/cannot-dataset
32
  model-index:
33
  - name: all-mpnet-base-v2-negation
34
  results:
 
761
  value: 84.77197321507954
762
  - type: max_f1
763
  value: 76.91440595175472
764
+ ---
765
+
766
+ # all-mpnet-base-v2-negation
767
+ This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model to perform better with negated pairs of sentences.
768
+
769
+ It maps sentences and paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
770
+
771
+ ## Usage (Sentence-Transformers)
772
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
773
+
774
+ ```
775
+ pip install -U sentence-transformers
776
+ ```
777
+
778
+ Then you can use the model like this:
779
+ ```python
780
+ from sentence_transformers import SentenceTransformer
781
+ sentences = ["This is an example sentence", "Each sentence is converted"]
782
+
783
+ model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation')
784
+ embeddings = model.encode(sentences)
785
+ print(embeddings)
786
+ ```
787
+
788
+ ## Usage (HuggingFace Transformers)
789
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
790
+
791
+ ```python
792
+ from transformers import AutoTokenizer, AutoModel
793
+ import torch
794
+ import torch.nn.functional as F
795
+
796
+ #Mean Pooling - Take attention mask into account for correct averaging
797
+ def mean_pooling(model_output, attention_mask):
798
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
799
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
800
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
801
+
802
+
803
+ # Sentences we want sentence embeddings for
804
+ sentences = ['This is an example sentence', 'Each sentence is converted']
805
+
806
+ # Load model from HuggingFace Hub
807
+ tokenizer = AutoTokenizer.from_pretrained('dmlls/all-mpnet-base-v2-negation')
808
+ model = AutoModel.from_pretrained('dmlls/all-mpnet-base-v2-negation')
809
+
810
+ # Tokenize sentences
811
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
812
+
813
+ # Compute token embeddings
814
+ with torch.no_grad():
815
+ model_output = model(**encoded_input)
816
+
817
+ # Perform pooling
818
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
819
+
820
+ # Normalize embeddings
821
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
822
+
823
+ print("Sentence embeddings:")
824
+ print(sentence_embeddings)
825
+ ```
826
+
827
+ ------
828
+
829
+ ## Background
830
+
831
+ This model was finetuned within the context of the [*This is not correct! Negation-aware Evaluation of Language Generation Systems*](https://arxiv.org/abs/2307.13989) paper.
832
+
833
+
834
+ ## Intended uses
835
+
836
+ Our model is intended to be used as a sentence and short paragraph encoder, performing well (i.e., reporting lower similarity scores) on negated pairs of sentences when compared to its base model.
837
+
838
+ Given an input text, it outputs a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
839
+
840
+ By default, input text longer than 384 word pieces is truncated.
841
+
842
+
843
+ ## Training procedure
844
+
845
+ ### Pre-training
846
+
847
+ We used [`sentence-transformers/all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as base model.
848
+
849
+ ### Fine-tuning
850
+
851
+ We fine-tuned the model on the [CANNOT dataset](https://huggingface.co/datasets/tum-nlp/cannot-dataset) using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs.
852
+
853
+ #### Hyper parameters
854
+ We followed an analogous approach to [how other Sentence Transformers were trained](https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/examples/training/nli/training_nli_v2.py).
855
+
856
+ We took the first 90% of samples from the CANNOT dataset as the training split.
857
+
858
+ We used a batch size of 64 and trained for 1 epoch.