File size: 3,715 Bytes
9ca6f51 750b095 57aabc7 750b095 7683a91 57aabc7 750b095 57aabc7 6901507 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 59ee130 6901507 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 f3ce2c7 9ca6f51 750b095 f3ce2c7 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 6901507 9ca6f51 750b095 9ca6f51 750b095 f3ce2c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_7_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luganda-CV-train-validation-7.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_7_0
type: common_voice_7_0
config: lg
split: test
args: lg
metrics:
- name: Wer
type: wer
value: 0.1933150003273751
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-luganda-CV-train-validation-7.0
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation.
When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set:
- Loss: 0.2282
- Wer: 0.1933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation dataset for training and the test dataset for validation.
## Training procedure
We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1859 | 1.89 | 300 | 0.2854 | 0.2866 |
| 0.1137 | 3.77 | 600 | 0.2503 | 0.2469 |
| 0.0712 | 5.66 | 900 | 0.2043 | 0.2092 |
| 0.0446 | 7.55 | 1200 | 0.2156 | 0.2005 |
| 0.0269 | 9.43 | 1500 | 0.2282 | 0.1933 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
### Usage
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lg", split="test[:10]")
processor = Wav2Vec2Processor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
model = Wav2Vec2ForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
|