File size: 1,258 Bytes
cfd0043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: "I love AutoTrain"
datasets:
- dmytrobaida/autotrain-data-ukrainian-telegram-sentiment-analysis
co2_eq_emissions:
emissions: 0.10582404396425517
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 70044138081
- CO2 Emissions (in grams): 0.1058
## Validation Metrics
- Loss: 0.461
- Accuracy: 0.817
- Precision: 0.824
- Recall: 0.955
- AUC: 0.772
- F1: 0.885
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |