File size: 6,317 Bytes
88359db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import time

import cv2
import numpy as np
import onnxruntime as ort

from imagenet_classes import IMAGENET2012_CLASSES


def parse_arguments():
    parser = argparse.ArgumentParser(description="Video inference with TensorRT")
    parser.add_argument("--output_video", type=str, help="Path to output video file")
    parser.add_argument("--input_video", type=str, help="Path to input video file")
    parser.add_argument("--webcam", action="store_true", help="Use webcam as input")
    parser.add_argument(
        "--live", action="store_true", help="View video live during inference"
    )
    return parser.parse_args()


def get_ort_session(model_path):
    providers = [
        (
            "TensorrtExecutionProvider",
            {
                "device_id": 0,
                "trt_max_workspace_size": 8589934592,
                "trt_fp16_enable": True,
                "trt_engine_cache_enable": True,
                "trt_engine_cache_path": "./trt_cache",
                "trt_force_sequential_engine_build": False,
                "trt_max_partition_iterations": 10000,
                "trt_min_subgraph_size": 1,
                "trt_builder_optimization_level": 5,
                "trt_timing_cache_enable": True,
            },
        ),
    ]
    return ort.InferenceSession(model_path, providers=providers)


def preprocess_frame(frame):
    # Use cv2 for resizing instead of PIL for better performance
    resized = cv2.resize(frame, (448, 448), interpolation=cv2.INTER_LINEAR)
    img_numpy = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB).astype(np.float32)
    img_numpy = img_numpy.transpose(2, 0, 1)
    img_numpy = np.expand_dims(img_numpy, axis=0)
    return img_numpy


def get_top_predictions(output, top_k=5):
    # Apply softmax
    exp_output = np.exp(output - np.max(output, axis=1, keepdims=True))
    probabilities = exp_output / np.sum(exp_output, axis=1, keepdims=True)

    # Get top k indices and probabilities
    top_indices = np.argsort(probabilities[0])[-top_k:][::-1]
    top_probs = probabilities[0][top_indices] * 100

    im_classes = list(IMAGENET2012_CLASSES.values())
    class_names = [im_classes[i] for i in top_indices]

    return list(zip(class_names, top_probs.tolist()))


def draw_predictions(frame, predictions, fps):
    # Draw FPS in the top right corner with dark blue background
    fps_text = f"FPS: {fps:.2f}"
    (text_width, text_height), _ = cv2.getTextSize(
        fps_text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2
    )
    text_offset_x = frame.shape[1] - text_width - 10
    text_offset_y = 30
    box_coords = (
        (text_offset_x - 5, text_offset_y + 5),
        (text_offset_x + text_width + 5, text_offset_y - text_height - 5),
    )
    cv2.rectangle(
        frame, box_coords[0], box_coords[1], (139, 0, 0), cv2.FILLED
    )  # Dark blue background
    cv2.putText(
        frame,
        fps_text,
        (text_offset_x, text_offset_y),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.7,
        (255, 255, 255),  # White text
        2,
    )

    # Draw predictions
    for i, (name, prob) in enumerate(predictions):
        text = f"{name}: {prob:.2f}%"
        cv2.putText(
            frame,
            text,
            (10, 30 + i * 30),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.7,
            (0, 255, 0),
            2,
        )

    # Draw model name at the bottom of the frame with red background
    model_name = "Model: eva02_large_patch14_448"
    (text_width, text_height), _ = cv2.getTextSize(
        model_name, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2
    )
    text_x = (frame.shape[1] - text_width) // 2
    text_y = frame.shape[0] - 20
    box_coords = (
        (text_x - 5, text_y + 5),
        (text_x + text_width + 5, text_y - text_height - 5),
    )
    cv2.rectangle(
        frame, box_coords[0], box_coords[1], (0, 0, 255), cv2.FILLED
    )  # Red background
    cv2.putText(
        frame,
        model_name,
        (text_x, text_y),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.7,
        (255, 255, 255),  # White text
        2,
    )

    return frame


def process_video(input_path, output_path, session, live_view=False, use_webcam=False):
    if use_webcam:
        cap = cv2.VideoCapture(0)
    else:
        cap = cv2.VideoCapture(input_path)

    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))

    out = None
    if output_path:
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

    input_name = session.get_inputs()[0].name
    output_name = session.get_outputs()[0].name

    frame_count = 0
    total_time = 0
    current_fps = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        start_time = time.time()

        preprocessed = preprocess_frame(frame)
        output = session.run([output_name], {input_name: preprocessed})
        predictions = get_top_predictions(output[0])

        end_time = time.time()
        frame_time = end_time - start_time
        current_fps = 1 / frame_time

        frame_with_predictions = draw_predictions(frame, predictions, current_fps)

        if out:
            out.write(frame_with_predictions)

        if live_view:
            cv2.imshow("Inference", frame_with_predictions)
            if cv2.waitKey(1) & 0xFF == ord("q"):
                break

        total_time += frame_time
        frame_count += 1

        print(
            f"Processed frame {frame_count}, Time: {frame_time:.3f}s, FPS: {current_fps:.2f}"
        )

    cap.release()
    if out:
        out.release()
    cv2.destroyAllWindows()

    avg_time = total_time / frame_count
    print(f"Average processing time per frame: {avg_time:.3f}s")
    print(f"Average FPS: {1/avg_time:.2f}")


def main():
    args = parse_arguments()
    session = get_ort_session("merged_model_compose.onnx")

    if args.webcam:
        process_video(None, args.output_video, session, args.live, use_webcam=True)
    elif args.input_video:
        process_video(args.input_video, args.output_video, session, args.live)
    else:
        print("Error: Please specify either --input_video or --webcam")
        return


if __name__ == "__main__":
    main()