eva02_large_patch14_448 / 01_pytorch_latency_benchmark.py
dnth's picture
Upload 11 files
88359db verified
raw
history blame
1.1 kB
import time
from urllib.request import urlopen
import timm
import torch
from PIL import Image
model_name = "eva02_large_patch14_448.mim_m38m_ft_in22k_in1k"
model = timm.create_model(model_name, pretrained=True).eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
img = Image.open(
urlopen(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png"
)
)
def run_benchmark(model, device, num_images=10):
model = model.to(device)
with torch.inference_mode():
start = time.perf_counter()
for _ in range(num_images):
input_tensor = transforms(img).unsqueeze(0).to(device)
model(input_tensor)
end = time.perf_counter()
ms_per_image = (end - start) / num_images * 1000
fps = num_images / (end - start)
print(f"PyTorch model on {device}: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}")
if __name__ == "__main__":
run_benchmark(model, "cpu")
run_benchmark(model, "cuda")