|
import time |
|
from urllib.request import urlopen |
|
|
|
import cupy as cp |
|
import numpy as np |
|
import onnxruntime as ort |
|
import torch |
|
from PIL import Image |
|
|
|
from imagenet_classes import IMAGENET2012_CLASSES |
|
|
|
img = Image.open( |
|
urlopen( |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" |
|
) |
|
) |
|
|
|
|
|
def transforms_numpy(image: Image.Image): |
|
image = image.convert("RGB") |
|
image = image.resize((448, 448), Image.BICUBIC) |
|
img_numpy = np.array(image).astype(np.float32) / 255.0 |
|
img_numpy = img_numpy.transpose(2, 0, 1) |
|
mean = np.array([0.4815, 0.4578, 0.4082]).reshape(-1, 1, 1) |
|
std = np.array([0.2686, 0.2613, 0.2758]).reshape(-1, 1, 1) |
|
img_numpy = (img_numpy - mean) / std |
|
img_numpy = np.expand_dims(img_numpy, axis=0) |
|
img_numpy = img_numpy.astype(np.float32) |
|
return img_numpy |
|
|
|
|
|
def transforms_cupy(image: Image.Image): |
|
|
|
image = image.convert("RGB") |
|
image = image.resize((448, 448), Image.BICUBIC) |
|
|
|
|
|
img_cupy = cp.array(image, dtype=cp.float32) / 255.0 |
|
img_cupy = img_cupy.transpose(2, 0, 1) |
|
|
|
|
|
mean = cp.array([0.4815, 0.4578, 0.4082], dtype=cp.float32).reshape(-1, 1, 1) |
|
std = cp.array([0.2686, 0.2613, 0.2758], dtype=cp.float32).reshape(-1, 1, 1) |
|
img_cupy = (img_cupy - mean) / std |
|
|
|
|
|
img_cupy = cp.expand_dims(img_cupy, axis=0) |
|
|
|
return img_cupy |
|
|
|
|
|
|
|
onnx_filename = "eva02_large_patch14_448.onnx" |
|
session = ort.InferenceSession(onnx_filename, providers=["CUDAExecutionProvider"]) |
|
|
|
|
|
input_name = session.get_inputs()[0].name |
|
output_name = session.get_outputs()[0].name |
|
|
|
|
|
output = session.run([output_name], {input_name: transforms_numpy(img)})[0] |
|
|
|
|
|
|
|
output = torch.from_numpy(output) |
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
|
|
im_classes = list(IMAGENET2012_CLASSES.values()) |
|
class_names = [im_classes[i] for i in top5_class_indices[0]] |
|
|
|
|
|
for name, prob in zip(class_names, top5_probabilities[0]): |
|
print(f"{name}: {prob:.2f}%") |
|
|
|
|
|
num_images = 100 |
|
start = time.perf_counter() |
|
for i in range(num_images): |
|
output = session.run([output_name], {input_name: transforms_numpy(img)})[0] |
|
end = time.perf_counter() |
|
time_taken = end - start |
|
|
|
ms_per_image = time_taken / num_images * 1000 |
|
fps = num_images / time_taken |
|
|
|
print( |
|
f"Onnxruntime CUDA numpy transforms: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}" |
|
) |
|
|
|
|
|
|
|
num_images = 100 |
|
start = time.perf_counter() |
|
for i in range(num_images): |
|
img_cupy = transforms_cupy(img) |
|
output = session.run([output_name], {input_name: cp.asnumpy(img_cupy)})[0] |
|
end = time.perf_counter() |
|
time_taken = end - start |
|
|
|
ms_per_image = time_taken / num_images * 1000 |
|
fps = num_images / time_taken |
|
|
|
print( |
|
f"Onnxruntime CUDA cupy transforms: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}" |
|
) |
|
|