|
import time |
|
from urllib.request import urlopen |
|
|
|
import cupy as cp |
|
import numpy as np |
|
import onnxruntime as ort |
|
import torch |
|
from PIL import Image |
|
|
|
from imagenet_classes import IMAGENET2012_CLASSES |
|
|
|
img = Image.open( |
|
urlopen( |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" |
|
) |
|
) |
|
|
|
|
|
def read_image(image: Image.Image): |
|
image = image.convert("RGB") |
|
img_numpy = np.array(image).astype(np.float32) |
|
img_numpy = img_numpy.transpose(2, 0, 1) |
|
img_numpy = np.expand_dims(img_numpy, axis=0) |
|
return img_numpy |
|
|
|
|
|
providers = [ |
|
( |
|
"TensorrtExecutionProvider", |
|
{ |
|
"device_id": 0, |
|
"trt_max_workspace_size": 8589934592, |
|
"trt_fp16_enable": True, |
|
"trt_engine_cache_enable": True, |
|
"trt_engine_cache_path": "./trt_cache", |
|
"trt_force_sequential_engine_build": False, |
|
"trt_max_partition_iterations": 10000, |
|
"trt_min_subgraph_size": 1, |
|
"trt_builder_optimization_level": 5, |
|
"trt_timing_cache_enable": True, |
|
}, |
|
), |
|
] |
|
|
|
session = ort.InferenceSession("merged_model_compose.onnx", providers=providers) |
|
|
|
input_name = session.get_inputs()[0].name |
|
output_name = session.get_outputs()[0].name |
|
|
|
output = session.run([output_name], {input_name: read_image(img)}) |
|
|
|
|
|
|
|
|
|
output = torch.from_numpy(output[0]) |
|
print(output.shape) |
|
|
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
|
|
im_classes = list(IMAGENET2012_CLASSES.values()) |
|
class_names = [im_classes[i] for i in top5_class_indices[0]] |
|
|
|
|
|
for name, prob in zip(class_names, top5_probabilities[0]): |
|
print(f"{name}: {prob:.2f}%") |
|
|
|
num_images = 1000 |
|
start = time.perf_counter() |
|
for i in range(num_images): |
|
output = session.run([output_name], {input_name: read_image(img)}) |
|
end = time.perf_counter() |
|
time_taken = end - start |
|
|
|
ms_per_image = time_taken / num_images * 1000 |
|
fps = num_images / time_taken |
|
|
|
print(f"Onnxruntime TensorRT: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}") |
|
|