dotunadegbite
commited on
Commit
·
dee9e23
1
Parent(s):
af63bdb
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1458.87 +/- 166.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:702ab53ecce379dfde324a79c237f97c5a728984fd7ca6022acc12fd389857d7
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f76b94da940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f76b94da9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f76b94daa60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76b94daaf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f76b94dab80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f76b94dac10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f76b94daca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f76b94dad30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f76b94dadc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f76b94dae50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f76b94daee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f76b94daf70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f76b94d64e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677280154570843699,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKXiJj7tGNy+ic0oP0z2rj95loM/IQnhv8+YDz7nBlG/OyOFP/gnkr2XsCm+wjaqvR+0aD4C5RU/DH4cP7vdlkAJU40/GvJdv0gQ4z1ughU/n49xv/pvYDz6wg0+F09avgsagr+kxeS/b1DZPopDSz9uwfq+GELEP8fVp79cIgu+UndEPuBcg7/+4vS+quVAvjh8qj4Hfd2/G8wTv/pMrT/LCoW/TPDNv3PXND9k9L4/B9wmPyfES79KiZW9FBqTPiTdcb83EqE85kf0vYy8uL8LGoK/pMXkv29Q2T6ONaG/+PFCvrUFzz9g39S/hn65PwUTkD9SMhDAiYcmv1XOw75LPzO/bSQVQIOIojs3RBxAWkaov59+Jj2pJkM/wvZGvJoKJj+t5ay+Z7OnvhFnjj+mbkq/B54wP4wfWr+4aJW/CxqCv6TF5L9vUNk+jjWhvyYS1D0BZvQ+uZbNPolbpD915KI/5CaQP1pjD79GTBy/UP4fP8JSCT8Nzrc+9CUhPzUul75RvXq/lYVBPxYo1z7vdko/KUCKvyUlz75Lu6I/yXtmv/Vkur7Doeu98kEBwEzdez/6Ow8/b1DZPo41ob+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmDx42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHdYQvgAAAAC1+ADAAAAAAP/CjDwAAAAAlbTcPwAAAAABJf69AAAAAH7Y3D8AAAAAidiEvQAAAABLffO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZjjStQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7DDr4AAAAAxpXdvwAAAAAJcNO9AAAAAEYT3T8AAAAASh5JvQAAAAC6bdk/AAAAAJyrfz0AAAAAuOv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAEa7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBop6g9AAAAAGJw978AAAAAT2jyvAAAAAA+DOU/AAAAAOpfv70AAAAAbQ30PwAAAADq4mO9AAAAAMpB8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACf/ci1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEYZGvQAAAAAU0fG/AAAAAN4uyLwAAAAAuPDuPwAAAAC/XK29AAAAAPbG/z8AAAAA9l1bOgAAAADepei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoqa9+PRzCMAWyUTegDjAF0lEdArZqDpeNT+HV9lChoBkdAl4C4k/r0KGgHTegDaAhHQK2dubqhUR51fZQoaAZHQJfG+LDQ7cRoB03oA2gIR0Ctn9Xlr/KhdX2UKGgGR0CUcdkhzNliaAdN6ANoCEdAraAzAYYR/XV9lChoBkdAkelinLq2SmgHTegDaAhHQK2mY1He7+V1fZQoaAZHQJnTOC8OCoVoB03oA2gIR0CtqZvPszEadX2UKGgGR0CUScuIAOriaAdN6ANoCEdAravDwvxpc3V9lChoBkdAlojb30wrUmgHTegDaAhHQK2sIFdLQHB1fZQoaAZHQIr6FSQ5myxoB03oA2gIR0CttH8lPacqdX2UKGgGR0CQtwXaJyhjaAdN6ANoCEdArbkFC9h7V3V9lChoBkdAkq2MRpUPx2gHTegDaAhHQK27VLbHp8p1fZQoaAZHQJOTxXPqs2hoB03oA2gIR0Ctu7hcJMQFdX2UKGgGR0CVBI4iX6ZZaAdN6ANoCEdArcHNfJFLFnV9lChoBkdAll8V+qioKmgHTegDaAhHQK3FBKYAsCl1fZQoaAZHQJT3Pmr8zhxoB03oA2gIR0CtxyJpFkQPdX2UKGgGR0CVeqfoA4n4aAdN6ANoCEdArcd6KHfuTnV9lChoBkdAmTSR2St/4WgHTegDaAhHQK3OMRHPNV11fZQoaAZHQJUwgJw84gloB03oA2gIR0Ct0xTUqhDgdX2UKGgGR0COINY4ACGOaAdN6ANoCEdArdZLmr8zh3V9lChoBkdAkkGfHggow2gHTegDaAhHQK3Wo/4ZdfN1fZQoaAZHQJhxOugYgq5oB03oA2gIR0Ct3LBFd9lVdX2UKGgGR0CZkLKoybhFaAdN6ANoCEdArd/b8m8dxXV9lChoBkdAlQqGFnIyTWgHTegDaAhHQK3h82n889x1fZQoaAZHQJWF12KVII5oB03oA2gIR0Ct4lGDDjzadX2UKGgGR0CVOg5WRzRyaAdN6ANoCEdArehydrftQnV9lChoBkdAlR+/OdGy5mgHTegDaAhHQK3sWGZeAut1fZQoaAZHQJR0k+NcW0toB03oA2gIR0Ct73rMcIZ7dX2UKGgGR0CU0ATz/ZM+aAdN6ANoCEdArfASCcwxnHV9lChoBkdAkvkAhB7eEmgHTegDaAhHQK335bcGkep1fZQoaAZHQJNyWi9IwudoB03oA2gIR0Ct+zEt29tedX2UKGgGR0CXmgwGW2PUaAdN6ANoCEdArf1QpDu0C3V9lChoBkdAlVK5xvNu+GgHTegDaAhHQK39qEHMUyp1fZQoaAZHQJTB+MdcSoRoB03oA2gIR0CuA8zt9hJAdX2UKGgGR0CWsYLhJiAlaAdN6ANoCEdArgcQOx0MgHV9lChoBkdAlBGuGO+7DmgHTegDaAhHQK4JfWSU1Q91fZQoaAZHQJQFxnK4hEBoB03oA2gIR0CuCgmahHskdX2UKGgGR0COxvefI0ZWaAdN6ANoCEdArhNEmplz2nV9lChoBkdAh1CmUnogWGgHTegDaAhHQK4Wk7rcCYF1fZQoaAZHQJdB3x/d69loB03oA2gIR0CuGK1AJLM+dX2UKGgGR0CS8qbGFSKnaAdN6ANoCEdArhkHllsguHV9lChoBkdAlEcMpCrtFGgHTegDaAhHQK4fE/Tspod1fZQoaAZHQJecjq/ub7VoB03oA2gIR0CuIj3w9aEBdX2UKGgGR0CXxLY/3WWhaAdN6ANoCEdAriRZ1RtP6HV9lChoBkdAlX/CT+vQnmgHTegDaAhHQK4kuD7Ikqt1fZQoaAZHQJT50482aUloB03oA2gIR0CuLL60x/NJdX2UKGgGR0CSMuIOH310aAdN6ANoCEdArjFtxlxwQ3V9lChoBkdAmC9It6HCXWgHTegDaAhHQK4zjaqS5iF1fZQoaAZHQJW7UjiXIENoB03oA2gIR0CuM/ThgmZ3dX2UKGgGR0CWLflLvkR0aAdN6ANoCEdArjouq5sj3XV9lChoBkdAklMNb9qDb2gHTegDaAhHQK49dMvh60J1fZQoaAZHQJW/Ty7PIGRoB03oA2gIR0CuP7OE/SpjdX2UKGgGR0CQRasVclgMaAdN6ANoCEdArkA6uMdcS3V9lChoBkdAkwmnNxEORWgHTegDaAhHQK5K2KAJ9iN1fZQoaAZHQJb1q1YyO7xoB03oA2gIR0CuT9VO9FnadX2UKGgGR0CQ15oysS00aAdN6ANoCEdArlK33+MqBnV9lChoBkdAkdJFEqlP8GgHTegDaAhHQK5TEL3sXzl1fZQoaAZHQJFdUpz90ihoB03oA2gIR0CuWTXZXdTHdX2UKGgGR0CQQTBLPD51aAdN6ANoCEdArlx7KLbYb3V9lChoBkdAkw//fO2RaGgHTegDaAhHQK5enHfdhy91fZQoaAZHQIZ4JQrMC91oB03oA2gIR0CuXvWE9MbndX2UKGgGR0CL/chJyyUtaAdN6ANoCEdArmUjifg75nV9lChoBkdAlXOxO58Sf2gHTegDaAhHQK5pmQlKK511fZQoaAZHQJUPTSDyvs9oB03oA2gIR0CubQfjCHh1dX2UKGgGR0COHR7N0NjLaAdN6ANoCEdArm2YYBNmDnV9lChoBkdAlm+NzfaYeGgHTegDaAhHQK500NSZSel1fZQoaAZHQJZlQiyIHkdoB03oA2gIR0CueANnf2sadX2UKGgGR0CWH/VPva11aAdN6ANoCEdArnobwWnCO3V9lChoBkdAlsss4HX2/WgHTegDaAhHQK56dJBgNPR1fZQoaAZHQJiJi7HyVfNoB03oA2gIR0CugK2E0zj4dX2UKGgGR0CXL+fKISDiaAdN6ANoCEdAroP5rSE123V9lChoBkdAlIcEyckMTmgHTegDaAhHQK6HERV6u4h1fZQoaAZHQJaiqx/ustFoB03oA2gIR0Cuh5RSYPXkdX2UKGgGR0CUtYRSP2f1aAdN6ANoCEdArpAXm7rcCnV9lChoBkdAk/Uwmqo60mgHTegDaAhHQK6TYW3z+WJ1fZQoaAZHQJLgQoMKCxxoB03oA2gIR0CulYZCngpCdX2UKGgGR0CO6tt2s7uEaAdN6ANoCEdArpXgiosI3XV9lChoBkdAjXCy3solU2gHTegDaAhHQK6cD84Pwux1fZQoaAZHQI0UqCUX531oB03oA2gIR0Cun1/4IrvtdX2UKGgGR0CQoQmw7kn1aAdN6ANoCEdArqGEZvUBn3V9lChoBkdAlE0uE7GNrGgHTegDaAhHQK6h4T101ZV1fZQoaAZHQIPXslkYoApoB03oA2gIR0CuqxCeVcD9dX2UKGgGR0CJhha6BiCraAdN6ANoCEdArq8OCEpRXXV9lChoBkdAi0mvpyIYWWgHTegDaAhHQK6xQBd2Pkt1fZQoaAZHQIV8L6ciGFloB03oA2gIR0CusZniFTNudX2UKGgGR0CDLS43FUADaAdN6ANoCEdArre9PnB+F3V9lChoBkdAfdvhl18stmgHTegDaAhHQK66+udwvQF1fZQoaAZHQIqs+icoYvZoB03oA2gIR0CuvSKyv9tNdX2UKGgGR0CBwDdKNAC5aAdN6ANoCEdArr18ALiMpHV9lChoBkdAh5Bn5JsfrGgHTegDaAhHQK7FM0QbuMN1fZQoaAZHQJYKP3RG+bpoB03oA2gIR0Cuyn4jB2wFdX2UKGgGR0CSmRoZAIIGaAdN6ANoCEdArszPaFmFrXV9lChoBkdAlBq4IOYplWgHTegDaAhHQK7NKLmZE2J1fZQoaAZHQHB6jFAE+xJoB0v0aAhHQK7PrrzoUzt1fZQoaAZHQI8BVfqoqCpoB03oA2gIR0Cu00uwxFiKdX2UKGgGR0CVBebA1vVFaAdN6ANoCEdArtaNP8AJcHV9lChoBkdAk3KRkVeruWgHTegDaAhHQK7Y/q/M4cZ1fZQoaAZHQJamXOpsGgVoB03oA2gIR0Cu23trCWNWdX2UKGgGR0CV4K3Hq/ucaAdN6ANoCEdArt8PWQOnVHV9lChoBkdAkdaNYbKif2gHTegDaAhHQK7jvS3solV1fZQoaAZHQJbw+jwhGH5oB03oA2gIR0Cu543668QJdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cb8041cee1d14dad737caf5b9cd3bc63d4481065af1b157257ee4c81732dbed
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221552d3796b80850a1474c61afd8b28128a7cf0321f601edca4b11063755523
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f76b94da940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f76b94da9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f76b94daa60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76b94daaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f76b94dab80>", "forward": "<function ActorCriticPolicy.forward at 0x7f76b94dac10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f76b94daca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f76b94dad30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f76b94dadc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f76b94dae50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f76b94daee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f76b94daf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f76b94d64e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677280154570843699, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKXiJj7tGNy+ic0oP0z2rj95loM/IQnhv8+YDz7nBlG/OyOFP/gnkr2XsCm+wjaqvR+0aD4C5RU/DH4cP7vdlkAJU40/GvJdv0gQ4z1ughU/n49xv/pvYDz6wg0+F09avgsagr+kxeS/b1DZPopDSz9uwfq+GELEP8fVp79cIgu+UndEPuBcg7/+4vS+quVAvjh8qj4Hfd2/G8wTv/pMrT/LCoW/TPDNv3PXND9k9L4/B9wmPyfES79KiZW9FBqTPiTdcb83EqE85kf0vYy8uL8LGoK/pMXkv29Q2T6ONaG/+PFCvrUFzz9g39S/hn65PwUTkD9SMhDAiYcmv1XOw75LPzO/bSQVQIOIojs3RBxAWkaov59+Jj2pJkM/wvZGvJoKJj+t5ay+Z7OnvhFnjj+mbkq/B54wP4wfWr+4aJW/CxqCv6TF5L9vUNk+jjWhvyYS1D0BZvQ+uZbNPolbpD915KI/5CaQP1pjD79GTBy/UP4fP8JSCT8Nzrc+9CUhPzUul75RvXq/lYVBPxYo1z7vdko/KUCKvyUlz75Lu6I/yXtmv/Vkur7Doeu98kEBwEzdez/6Ow8/b1DZPo41ob+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmDx42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHdYQvgAAAAC1+ADAAAAAAP/CjDwAAAAAlbTcPwAAAAABJf69AAAAAH7Y3D8AAAAAidiEvQAAAABLffO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZjjStQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7DDr4AAAAAxpXdvwAAAAAJcNO9AAAAAEYT3T8AAAAASh5JvQAAAAC6bdk/AAAAAJyrfz0AAAAAuOv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAEa7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBop6g9AAAAAGJw978AAAAAT2jyvAAAAAA+DOU/AAAAAOpfv70AAAAAbQ30PwAAAADq4mO9AAAAAMpB8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACf/ci1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEYZGvQAAAAAU0fG/AAAAAN4uyLwAAAAAuPDuPwAAAAC/XK29AAAAAPbG/z8AAAAA9l1bOgAAAADepei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoqa9+PRzCMAWyUTegDjAF0lEdArZqDpeNT+HV9lChoBkdAl4C4k/r0KGgHTegDaAhHQK2dubqhUR51fZQoaAZHQJfG+LDQ7cRoB03oA2gIR0Ctn9Xlr/KhdX2UKGgGR0CUcdkhzNliaAdN6ANoCEdAraAzAYYR/XV9lChoBkdAkelinLq2SmgHTegDaAhHQK2mY1He7+V1fZQoaAZHQJnTOC8OCoVoB03oA2gIR0CtqZvPszEadX2UKGgGR0CUScuIAOriaAdN6ANoCEdAravDwvxpc3V9lChoBkdAlojb30wrUmgHTegDaAhHQK2sIFdLQHB1fZQoaAZHQIr6FSQ5myxoB03oA2gIR0CttH8lPacqdX2UKGgGR0CQtwXaJyhjaAdN6ANoCEdArbkFC9h7V3V9lChoBkdAkq2MRpUPx2gHTegDaAhHQK27VLbHp8p1fZQoaAZHQJOTxXPqs2hoB03oA2gIR0Ctu7hcJMQFdX2UKGgGR0CVBI4iX6ZZaAdN6ANoCEdArcHNfJFLFnV9lChoBkdAll8V+qioKmgHTegDaAhHQK3FBKYAsCl1fZQoaAZHQJT3Pmr8zhxoB03oA2gIR0CtxyJpFkQPdX2UKGgGR0CVeqfoA4n4aAdN6ANoCEdArcd6KHfuTnV9lChoBkdAmTSR2St/4WgHTegDaAhHQK3OMRHPNV11fZQoaAZHQJUwgJw84gloB03oA2gIR0Ct0xTUqhDgdX2UKGgGR0COINY4ACGOaAdN6ANoCEdArdZLmr8zh3V9lChoBkdAkkGfHggow2gHTegDaAhHQK3Wo/4ZdfN1fZQoaAZHQJhxOugYgq5oB03oA2gIR0Ct3LBFd9lVdX2UKGgGR0CZkLKoybhFaAdN6ANoCEdArd/b8m8dxXV9lChoBkdAlQqGFnIyTWgHTegDaAhHQK3h82n889x1fZQoaAZHQJWF12KVII5oB03oA2gIR0Ct4lGDDjzadX2UKGgGR0CVOg5WRzRyaAdN6ANoCEdArehydrftQnV9lChoBkdAlR+/OdGy5mgHTegDaAhHQK3sWGZeAut1fZQoaAZHQJR0k+NcW0toB03oA2gIR0Ct73rMcIZ7dX2UKGgGR0CU0ATz/ZM+aAdN6ANoCEdArfASCcwxnHV9lChoBkdAkvkAhB7eEmgHTegDaAhHQK335bcGkep1fZQoaAZHQJNyWi9IwudoB03oA2gIR0Ct+zEt29tedX2UKGgGR0CXmgwGW2PUaAdN6ANoCEdArf1QpDu0C3V9lChoBkdAlVK5xvNu+GgHTegDaAhHQK39qEHMUyp1fZQoaAZHQJTB+MdcSoRoB03oA2gIR0CuA8zt9hJAdX2UKGgGR0CWsYLhJiAlaAdN6ANoCEdArgcQOx0MgHV9lChoBkdAlBGuGO+7DmgHTegDaAhHQK4JfWSU1Q91fZQoaAZHQJQFxnK4hEBoB03oA2gIR0CuCgmahHskdX2UKGgGR0COxvefI0ZWaAdN6ANoCEdArhNEmplz2nV9lChoBkdAh1CmUnogWGgHTegDaAhHQK4Wk7rcCYF1fZQoaAZHQJdB3x/d69loB03oA2gIR0CuGK1AJLM+dX2UKGgGR0CS8qbGFSKnaAdN6ANoCEdArhkHllsguHV9lChoBkdAlEcMpCrtFGgHTegDaAhHQK4fE/Tspod1fZQoaAZHQJecjq/ub7VoB03oA2gIR0CuIj3w9aEBdX2UKGgGR0CXxLY/3WWhaAdN6ANoCEdAriRZ1RtP6HV9lChoBkdAlX/CT+vQnmgHTegDaAhHQK4kuD7Ikqt1fZQoaAZHQJT50482aUloB03oA2gIR0CuLL60x/NJdX2UKGgGR0CSMuIOH310aAdN6ANoCEdArjFtxlxwQ3V9lChoBkdAmC9It6HCXWgHTegDaAhHQK4zjaqS5iF1fZQoaAZHQJW7UjiXIENoB03oA2gIR0CuM/ThgmZ3dX2UKGgGR0CWLflLvkR0aAdN6ANoCEdArjouq5sj3XV9lChoBkdAklMNb9qDb2gHTegDaAhHQK49dMvh60J1fZQoaAZHQJW/Ty7PIGRoB03oA2gIR0CuP7OE/SpjdX2UKGgGR0CQRasVclgMaAdN6ANoCEdArkA6uMdcS3V9lChoBkdAkwmnNxEORWgHTegDaAhHQK5K2KAJ9iN1fZQoaAZHQJb1q1YyO7xoB03oA2gIR0CuT9VO9FnadX2UKGgGR0CQ15oysS00aAdN6ANoCEdArlK33+MqBnV9lChoBkdAkdJFEqlP8GgHTegDaAhHQK5TEL3sXzl1fZQoaAZHQJFdUpz90ihoB03oA2gIR0CuWTXZXdTHdX2UKGgGR0CQQTBLPD51aAdN6ANoCEdArlx7KLbYb3V9lChoBkdAkw//fO2RaGgHTegDaAhHQK5enHfdhy91fZQoaAZHQIZ4JQrMC91oB03oA2gIR0CuXvWE9MbndX2UKGgGR0CL/chJyyUtaAdN6ANoCEdArmUjifg75nV9lChoBkdAlXOxO58Sf2gHTegDaAhHQK5pmQlKK511fZQoaAZHQJUPTSDyvs9oB03oA2gIR0CubQfjCHh1dX2UKGgGR0COHR7N0NjLaAdN6ANoCEdArm2YYBNmDnV9lChoBkdAlm+NzfaYeGgHTegDaAhHQK500NSZSel1fZQoaAZHQJZlQiyIHkdoB03oA2gIR0CueANnf2sadX2UKGgGR0CWH/VPva11aAdN6ANoCEdArnobwWnCO3V9lChoBkdAlsss4HX2/WgHTegDaAhHQK56dJBgNPR1fZQoaAZHQJiJi7HyVfNoB03oA2gIR0CugK2E0zj4dX2UKGgGR0CXL+fKISDiaAdN6ANoCEdAroP5rSE123V9lChoBkdAlIcEyckMTmgHTegDaAhHQK6HERV6u4h1fZQoaAZHQJaiqx/ustFoB03oA2gIR0Cuh5RSYPXkdX2UKGgGR0CUtYRSP2f1aAdN6ANoCEdArpAXm7rcCnV9lChoBkdAk/Uwmqo60mgHTegDaAhHQK6TYW3z+WJ1fZQoaAZHQJLgQoMKCxxoB03oA2gIR0CulYZCngpCdX2UKGgGR0CO6tt2s7uEaAdN6ANoCEdArpXgiosI3XV9lChoBkdAjXCy3solU2gHTegDaAhHQK6cD84Pwux1fZQoaAZHQI0UqCUX531oB03oA2gIR0Cun1/4IrvtdX2UKGgGR0CQoQmw7kn1aAdN6ANoCEdArqGEZvUBn3V9lChoBkdAlE0uE7GNrGgHTegDaAhHQK6h4T101ZV1fZQoaAZHQIPXslkYoApoB03oA2gIR0CuqxCeVcD9dX2UKGgGR0CJhha6BiCraAdN6ANoCEdArq8OCEpRXXV9lChoBkdAi0mvpyIYWWgHTegDaAhHQK6xQBd2Pkt1fZQoaAZHQIV8L6ciGFloB03oA2gIR0CusZniFTNudX2UKGgGR0CDLS43FUADaAdN6ANoCEdArre9PnB+F3V9lChoBkdAfdvhl18stmgHTegDaAhHQK66+udwvQF1fZQoaAZHQIqs+icoYvZoB03oA2gIR0CuvSKyv9tNdX2UKGgGR0CBwDdKNAC5aAdN6ANoCEdArr18ALiMpHV9lChoBkdAh5Bn5JsfrGgHTegDaAhHQK7FM0QbuMN1fZQoaAZHQJYKP3RG+bpoB03oA2gIR0Cuyn4jB2wFdX2UKGgGR0CSmRoZAIIGaAdN6ANoCEdArszPaFmFrXV9lChoBkdAlBq4IOYplWgHTegDaAhHQK7NKLmZE2J1fZQoaAZHQHB6jFAE+xJoB0v0aAhHQK7PrrzoUzt1fZQoaAZHQI8BVfqoqCpoB03oA2gIR0Cu00uwxFiKdX2UKGgGR0CVBebA1vVFaAdN6ANoCEdArtaNP8AJcHV9lChoBkdAk3KRkVeruWgHTegDaAhHQK7Y/q/M4cZ1fZQoaAZHQJamXOpsGgVoB03oA2gIR0Cu23trCWNWdX2UKGgGR0CV4K3Hq/ucaAdN6ANoCEdArt8PWQOnVHV9lChoBkdAkdaNYbKif2gHTegDaAhHQK7jvS3solV1fZQoaAZHQJbw+jwhGH5oB03oA2gIR0Cu543668QJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:875bdd7c7b240dc1f0696e79cad544ecacbe4886e2a806daedd2cc92d8bd8882
|
3 |
+
size 1023558
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1458.8663851408785, "std_reward": 166.0618252757079, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T00:11:23.313404"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e0c231ae0ffa6a61cec5f6c4a6d499cfd4d3fc4012c16ed56e271f27b24a48b
|
3 |
+
size 2136
|