add model
Browse files
LLaMmlein_1B.mlpackage/Data/com.apple.CoreML/model.mlmodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:019692f01dcff4379e0af56302a9461eb9f266653c9796992f308efa0210ff9f
|
3 |
+
size 402502
|
LLaMmlein_1B.mlpackage/Data/com.apple.CoreML/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:428840e541560e11a46f49be92b978b8c344fd873d9633b39f93a5678842604c
|
3 |
+
size 2200193792
|
LLaMmlein_1B.mlpackage/Manifest.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fileFormatVersion": "1.0.0",
|
3 |
+
"itemInfoEntries": {
|
4 |
+
"66E1E9FD-372C-4412-928B-F3B84A23D34B": {
|
5 |
+
"author": "com.apple.CoreML",
|
6 |
+
"description": "CoreML Model Specification",
|
7 |
+
"name": "model.mlmodel",
|
8 |
+
"path": "com.apple.CoreML/model.mlmodel"
|
9 |
+
},
|
10 |
+
"C4DCB504-21DC-4A96-8097-D4B4EBAED8F5": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Weights",
|
13 |
+
"name": "weights",
|
14 |
+
"path": "com.apple.CoreML/weights"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"rootModelIdentifier": "66E1E9FD-372C-4412-928B-F3B84A23D34B"
|
18 |
+
}
|
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- togethercomputer/RedPajama-Data-V2
|
4 |
+
language:
|
5 |
+
- de
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: coremltools
|
8 |
+
license: other
|
9 |
+
tags:
|
10 |
+
- coreml
|
11 |
+
- tinyllama
|
12 |
+
- german-language-model
|
13 |
+
---
|
14 |
+
|
15 |
+
# LLäMmlein 1B CoreML
|
16 |
+
|
17 |
+
This repository contains the CoreML version of [LLäMmlein 1B](https://huggingface.co/LSX-UniWue/LLaMmlein_1B), a German language model trained from scratch using the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
- **Model Type**: German Language Model based on TinyLlama architecture
|
22 |
+
- **Language:** German
|
23 |
+
- **Framework**: CoreML
|
24 |
+
- **Original Model:** [LSX-UniWue/LLaMmlein_1B](https://huggingface.co/LSX-UniWue/LLaMmlein_1B)
|
25 |
+
- **Size:** 1B parameters
|
26 |
+
- **Format:** CoreML (.mlpackage)
|
27 |
+
- **Minimum Deployment Target:** iOS 16
|
28 |
+
- **Compute Units:** ALL (CPU + Neural Engine)
|
29 |
+
- **Input Sequence Length:** 512 tokens
|
30 |
+
|
31 |
+
## Conversion Process
|
32 |
+
|
33 |
+
The model was converted from PyTorch to CoreML using the following steps:
|
34 |
+
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
import numpy as np
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
import coremltools as ct
|
40 |
+
|
41 |
+
# Load model and convert to TorchScript
|
42 |
+
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_1B")
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_1B")
|
44 |
+
|
45 |
+
# Set model to eval mode
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
# Create example input
|
49 |
+
text = "Ein Beispieltext"
|
50 |
+
inputs = tokenizer(text, return_tensors="pt")
|
51 |
+
|
52 |
+
# Create a wrapper class for tracing
|
53 |
+
class ModelWrapper(torch.nn.Module):
|
54 |
+
def __init__(self, model):
|
55 |
+
super().__init__()
|
56 |
+
self.model = model
|
57 |
+
|
58 |
+
def forward(self, input_ids):
|
59 |
+
return self.model(input_ids).logits
|
60 |
+
|
61 |
+
# Wrap and trace model
|
62 |
+
wrapped_model = ModelWrapper(model)
|
63 |
+
traced_model = torch.jit.trace(wrapped_model, inputs.input_ids)
|
64 |
+
|
65 |
+
# Convert to CoreML
|
66 |
+
model_mlpackage = ct.convert(
|
67 |
+
traced_model,
|
68 |
+
inputs=[
|
69 |
+
ct.TensorType(
|
70 |
+
name="input_ids",
|
71 |
+
shape=inputs.input_ids.shape,
|
72 |
+
dtype=np.int32
|
73 |
+
)
|
74 |
+
],
|
75 |
+
source="pytorch",
|
76 |
+
minimum_deployment_target=ct.target.iOS16,
|
77 |
+
convert_to="mlprogram",
|
78 |
+
compute_precision=ct.precision.FLOAT16,
|
79 |
+
compute_units=ct.ComputeUnit.ALL,
|
80 |
+
)
|
81 |
+
|
82 |
+
model_mlpackage.save("LLaMmlein_1B.mlpackage")
|
83 |
+
```
|
84 |
+
|
85 |
+
## Usage
|
86 |
+
|
87 |
+
To use this model on Apple devices:
|
88 |
+
|
89 |
+
```swift
|
90 |
+
import CoreML
|
91 |
+
|
92 |
+
// Load the model
|
93 |
+
let config = MLModelConfiguration()
|
94 |
+
let model = try LLaMmlein_1B(configuration: config)
|
95 |
+
|
96 |
+
// Prepare input
|
97 |
+
let inputIds = // Your tokenized input as [Int32]
|
98 |
+
|
99 |
+
// Make prediction
|
100 |
+
let prediction = try model.prediction(input_ids: inputIds)
|
101 |
+
```
|
102 |
+
|
103 |
+
## Performance Considerations
|
104 |
+
|
105 |
+
- The model is optimized for Apple Neural Engine
|
106 |
+
- Recommended for iOS 16+ devices
|
107 |
+
- Best performance achieved with batch size of 1
|
108 |
+
- Maximum sequence length is set to 512 tokens
|
109 |
+
|
110 |
+
## Original Model Information
|
111 |
+
|
112 |
+
The original model was trained on the German portion of RedPajama V2. For more details about the base model:
|
113 |
+
- Visit the [project page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/)
|
114 |
+
- Read the [research paper](arxiv.org/abs/2411.11171)
|
115 |
+
- Check the [SuperGLEBer benchmark](https://lsx-uniwue.github.io/SuperGLEBer-site/) for evaluation results
|
116 |
+
|
117 |
+
## License
|
118 |
+
|
119 |
+
This model inherits its license from the original LLäMmlein 1B model.
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
|
123 |
+
If you use this model, please cite the original work:
|
124 |
+
|
125 |
+
```bibtex
|
126 |
+
@misc{llammlein2024,
|
127 |
+
title={LLäMmlein: A German Language Model},
|
128 |
+
author={LSX-UniWue},
|
129 |
+
year={2024},
|
130 |
+
publisher={Hugging Face},
|
131 |
+
journal={Hugging Face Hub},
|
132 |
+
howpublished={\url{https://huggingface.co/LSX-UniWue/LLaMmlein_1B}},
|
133 |
+
}
|
134 |
+
```
|
135 |
+
|
136 |
+
For the original model description and evaluation results, see the [original model card](https://huggingface.co/LSX-UniWue/LLaMmlein_1B).
|
convert_model.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import coremltools as ct
|
5 |
+
|
6 |
+
# Load model and convert to TorchScript
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_1B")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_1B")
|
9 |
+
|
10 |
+
# Set model to eval mode
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Create example input
|
14 |
+
text = "Ein Beispieltext"
|
15 |
+
inputs = tokenizer(text, return_tensors="pt")
|
16 |
+
|
17 |
+
# Create a wrapper class for tracing
|
18 |
+
class ModelWrapper(torch.nn.Module):
|
19 |
+
def __init__(self, model):
|
20 |
+
super().__init__()
|
21 |
+
self.model = model
|
22 |
+
|
23 |
+
def forward(self, input_ids):
|
24 |
+
return self.model(input_ids).logits
|
25 |
+
|
26 |
+
# Wrap and trace model
|
27 |
+
wrapped_model = ModelWrapper(model)
|
28 |
+
traced_model = torch.jit.trace(wrapped_model, inputs.input_ids)
|
29 |
+
|
30 |
+
# Convert to CoreML
|
31 |
+
model_mlpackage = ct.convert(
|
32 |
+
traced_model,
|
33 |
+
inputs=[
|
34 |
+
ct.TensorType(
|
35 |
+
name="input_ids",
|
36 |
+
shape=inputs.input_ids.shape,
|
37 |
+
dtype=np.int32
|
38 |
+
)
|
39 |
+
],
|
40 |
+
source="pytorch",
|
41 |
+
minimum_deployment_target=ct.target.iOS16,
|
42 |
+
convert_to="mlprogram",
|
43 |
+
compute_precision=ct.precision.FLOAT16,
|
44 |
+
compute_units=ct.ComputeUnit.ALL,
|
45 |
+
)
|
46 |
+
|
47 |
+
model_mlpackage.save("LLaMmlein_1B.mlpackage")
|