File size: 3,127 Bytes
15409a7
 
 
 
 
 
e9ec4c4
15409a7
 
 
 
 
 
 
 
 
e9ec4c4
 
 
15409a7
 
 
62a43f2
52a4198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15409a7
 
 
 
 
 
 
8a14407
15409a7
62a43f2
 
15409a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
model-index:
- name: resnet-18-finetuned-dogfood
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: lewtun/dog_food
      type: lewtun/dog_food
      args: lewtun--dog_food
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.896
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: lewtun/dog_food
      type: lewtun/dog_food
      config: lewtun--dog_food
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8466666666666667
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8850127293141284
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.8466666666666667
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.8939157698241645
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.8555113273379528
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.8466666666666667
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.8466666666666667
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8431399312051647
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.8466666666666667
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.8430272582865614
      verified: true
    - name: loss
      type: loss
      value: 0.3633290231227875
      verified: true
    - name: matthews_correlation
      type: matthews_correlation
      value: 0.7973101366252381
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-18-finetuned-dogfood

This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2991
- Accuracy: 0.896

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.846         | 1.0   | 16   | 0.2662          | 0.9156   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1