douy commited on
Commit
1ad87bb
·
1 Parent(s): 2445d35

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,208 @@
1
  ---
2
- license: cc-by-nc-4.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-13b-hf
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ ### Framework versions
206
+
207
+
208
+ - PEFT 0.6.2
adapter_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "o_proj",
21
+ "gate_proj",
22
+ "k_proj",
23
+ "embed_tokens",
24
+ "lm_head",
25
+ "up_proj",
26
+ "down_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM"
30
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ec8caca20fbc78980aea60ee1ca3ea06e95d1c961eaf1e7c6e2813d86a61ad3
3
+ size 127625896
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<PAD>": 32000
3
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": {
5
+ "content": "<PAD>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "unk_token": {
12
+ "content": "<unk>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ }
18
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<PAD>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 4096,
43
+ "pad_token": "<PAD>",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 10,
6
+ "global_step": 81,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "learning_rate": 0.0,
14
+ "loss": 1.0172,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.07,
19
+ "learning_rate": 0.00018927892607143717,
20
+ "loss": 0.9587,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.11,
25
+ "learning_rate": 0.0003,
26
+ "loss": 0.9422,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.15,
31
+ "learning_rate": 0.0003,
32
+ "loss": 0.9651,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.19,
37
+ "learning_rate": 0.0003,
38
+ "loss": 1.0197,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.22,
43
+ "learning_rate": 0.0003,
44
+ "loss": 0.9455,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.26,
49
+ "learning_rate": 0.0003,
50
+ "loss": 0.9029,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.3,
55
+ "learning_rate": 0.0003,
56
+ "loss": 0.9045,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.33,
61
+ "learning_rate": 0.0003,
62
+ "loss": 0.8424,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.37,
67
+ "learning_rate": 0.0003,
68
+ "loss": 0.882,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.37,
73
+ "eval_accuracy": 0.22187782513237764,
74
+ "eval_loss": 0.8447974324226379,
75
+ "eval_runtime": 44.6213,
76
+ "eval_samples_per_second": 0.807,
77
+ "eval_steps_per_second": 0.045,
78
+ "step": 10
79
+ },
80
+ {
81
+ "epoch": 0.41,
82
+ "learning_rate": 0.0003,
83
+ "loss": 0.8986,
84
+ "step": 11
85
+ },
86
+ {
87
+ "epoch": 0.44,
88
+ "learning_rate": 0.0003,
89
+ "loss": 0.9005,
90
+ "step": 12
91
+ },
92
+ {
93
+ "epoch": 0.48,
94
+ "learning_rate": 0.0003,
95
+ "loss": 0.8788,
96
+ "step": 13
97
+ },
98
+ {
99
+ "epoch": 0.52,
100
+ "learning_rate": 0.0003,
101
+ "loss": 0.8391,
102
+ "step": 14
103
+ },
104
+ {
105
+ "epoch": 0.56,
106
+ "learning_rate": 0.0003,
107
+ "loss": 0.8564,
108
+ "step": 15
109
+ },
110
+ {
111
+ "epoch": 0.59,
112
+ "learning_rate": 0.0003,
113
+ "loss": 0.84,
114
+ "step": 16
115
+ },
116
+ {
117
+ "epoch": 0.63,
118
+ "learning_rate": 0.0003,
119
+ "loss": 0.8479,
120
+ "step": 17
121
+ },
122
+ {
123
+ "epoch": 0.67,
124
+ "learning_rate": 0.0003,
125
+ "loss": 0.8174,
126
+ "step": 18
127
+ },
128
+ {
129
+ "epoch": 0.7,
130
+ "learning_rate": 0.0003,
131
+ "loss": 0.8431,
132
+ "step": 19
133
+ },
134
+ {
135
+ "epoch": 0.74,
136
+ "learning_rate": 0.0003,
137
+ "loss": 0.8456,
138
+ "step": 20
139
+ },
140
+ {
141
+ "epoch": 0.74,
142
+ "eval_accuracy": 0.2230832149468337,
143
+ "eval_loss": 0.8235660195350647,
144
+ "eval_runtime": 43.3512,
145
+ "eval_samples_per_second": 0.83,
146
+ "eval_steps_per_second": 0.046,
147
+ "step": 20
148
+ },
149
+ {
150
+ "epoch": 0.78,
151
+ "learning_rate": 0.0003,
152
+ "loss": 0.8614,
153
+ "step": 21
154
+ },
155
+ {
156
+ "epoch": 0.81,
157
+ "learning_rate": 0.0003,
158
+ "loss": 0.8756,
159
+ "step": 22
160
+ },
161
+ {
162
+ "epoch": 0.85,
163
+ "learning_rate": 0.0003,
164
+ "loss": 0.7752,
165
+ "step": 23
166
+ },
167
+ {
168
+ "epoch": 0.89,
169
+ "learning_rate": 0.0003,
170
+ "loss": 0.7891,
171
+ "step": 24
172
+ },
173
+ {
174
+ "epoch": 0.93,
175
+ "learning_rate": 0.0003,
176
+ "loss": 0.8094,
177
+ "step": 25
178
+ },
179
+ {
180
+ "epoch": 0.96,
181
+ "learning_rate": 0.0003,
182
+ "loss": 0.8546,
183
+ "step": 26
184
+ },
185
+ {
186
+ "epoch": 1.0,
187
+ "learning_rate": 0.0003,
188
+ "loss": 0.812,
189
+ "step": 27
190
+ },
191
+ {
192
+ "epoch": 1.04,
193
+ "learning_rate": 0.0003,
194
+ "loss": 0.769,
195
+ "step": 28
196
+ },
197
+ {
198
+ "epoch": 1.07,
199
+ "learning_rate": 0.0003,
200
+ "loss": 0.7538,
201
+ "step": 29
202
+ },
203
+ {
204
+ "epoch": 1.11,
205
+ "learning_rate": 0.0003,
206
+ "loss": 0.7431,
207
+ "step": 30
208
+ },
209
+ {
210
+ "epoch": 1.11,
211
+ "eval_accuracy": 0.2239011580352146,
212
+ "eval_loss": 0.8174943923950195,
213
+ "eval_runtime": 43.2867,
214
+ "eval_samples_per_second": 0.832,
215
+ "eval_steps_per_second": 0.046,
216
+ "step": 30
217
+ },
218
+ {
219
+ "epoch": 1.15,
220
+ "learning_rate": 0.0003,
221
+ "loss": 0.812,
222
+ "step": 31
223
+ },
224
+ {
225
+ "epoch": 1.19,
226
+ "learning_rate": 0.0003,
227
+ "loss": 0.8473,
228
+ "step": 32
229
+ },
230
+ {
231
+ "epoch": 1.22,
232
+ "learning_rate": 0.0003,
233
+ "loss": 0.7627,
234
+ "step": 33
235
+ },
236
+ {
237
+ "epoch": 1.26,
238
+ "learning_rate": 0.0003,
239
+ "loss": 0.7231,
240
+ "step": 34
241
+ },
242
+ {
243
+ "epoch": 1.3,
244
+ "learning_rate": 0.0003,
245
+ "loss": 0.7546,
246
+ "step": 35
247
+ },
248
+ {
249
+ "epoch": 1.33,
250
+ "learning_rate": 0.0003,
251
+ "loss": 0.6798,
252
+ "step": 36
253
+ },
254
+ {
255
+ "epoch": 1.37,
256
+ "learning_rate": 0.0003,
257
+ "loss": 0.7154,
258
+ "step": 37
259
+ },
260
+ {
261
+ "epoch": 1.41,
262
+ "learning_rate": 0.0003,
263
+ "loss": 0.8383,
264
+ "step": 38
265
+ },
266
+ {
267
+ "epoch": 1.44,
268
+ "learning_rate": 0.0003,
269
+ "loss": 0.7747,
270
+ "step": 39
271
+ },
272
+ {
273
+ "epoch": 1.48,
274
+ "learning_rate": 0.0003,
275
+ "loss": 0.7121,
276
+ "step": 40
277
+ },
278
+ {
279
+ "epoch": 1.48,
280
+ "eval_accuracy": 0.22361057299065823,
281
+ "eval_loss": 0.830994188785553,
282
+ "eval_runtime": 43.2574,
283
+ "eval_samples_per_second": 0.832,
284
+ "eval_steps_per_second": 0.046,
285
+ "step": 40
286
+ },
287
+ {
288
+ "epoch": 1.52,
289
+ "learning_rate": 0.0003,
290
+ "loss": 0.7714,
291
+ "step": 41
292
+ },
293
+ {
294
+ "epoch": 1.56,
295
+ "learning_rate": 0.0003,
296
+ "loss": 0.7679,
297
+ "step": 42
298
+ },
299
+ {
300
+ "epoch": 1.59,
301
+ "learning_rate": 0.0003,
302
+ "loss": 0.6597,
303
+ "step": 43
304
+ },
305
+ {
306
+ "epoch": 1.63,
307
+ "learning_rate": 0.0003,
308
+ "loss": 0.73,
309
+ "step": 44
310
+ },
311
+ {
312
+ "epoch": 1.67,
313
+ "learning_rate": 0.0003,
314
+ "loss": 0.7872,
315
+ "step": 45
316
+ },
317
+ {
318
+ "epoch": 1.7,
319
+ "learning_rate": 0.0003,
320
+ "loss": 0.7107,
321
+ "step": 46
322
+ },
323
+ {
324
+ "epoch": 1.74,
325
+ "learning_rate": 0.0003,
326
+ "loss": 0.6862,
327
+ "step": 47
328
+ },
329
+ {
330
+ "epoch": 1.78,
331
+ "learning_rate": 0.0003,
332
+ "loss": 0.6835,
333
+ "step": 48
334
+ },
335
+ {
336
+ "epoch": 1.81,
337
+ "learning_rate": 0.0003,
338
+ "loss": 0.8554,
339
+ "step": 49
340
+ },
341
+ {
342
+ "epoch": 1.85,
343
+ "learning_rate": 0.0003,
344
+ "loss": 0.6281,
345
+ "step": 50
346
+ },
347
+ {
348
+ "epoch": 1.85,
349
+ "eval_accuracy": 0.22325541349175598,
350
+ "eval_loss": 0.8365404605865479,
351
+ "eval_runtime": 43.3797,
352
+ "eval_samples_per_second": 0.83,
353
+ "eval_steps_per_second": 0.046,
354
+ "step": 50
355
+ },
356
+ {
357
+ "epoch": 1.89,
358
+ "learning_rate": 0.0003,
359
+ "loss": 0.6688,
360
+ "step": 51
361
+ },
362
+ {
363
+ "epoch": 1.93,
364
+ "learning_rate": 0.0003,
365
+ "loss": 0.7317,
366
+ "step": 52
367
+ },
368
+ {
369
+ "epoch": 1.96,
370
+ "learning_rate": 0.0003,
371
+ "loss": 0.7165,
372
+ "step": 53
373
+ },
374
+ {
375
+ "epoch": 2.0,
376
+ "learning_rate": 0.0003,
377
+ "loss": 0.5791,
378
+ "step": 54
379
+ },
380
+ {
381
+ "epoch": 2.04,
382
+ "learning_rate": 0.0003,
383
+ "loss": 0.5359,
384
+ "step": 55
385
+ },
386
+ {
387
+ "epoch": 2.07,
388
+ "learning_rate": 0.0003,
389
+ "loss": 0.636,
390
+ "step": 56
391
+ },
392
+ {
393
+ "epoch": 2.11,
394
+ "learning_rate": 0.0003,
395
+ "loss": 0.5707,
396
+ "step": 57
397
+ },
398
+ {
399
+ "epoch": 2.15,
400
+ "learning_rate": 0.0003,
401
+ "loss": 0.7385,
402
+ "step": 58
403
+ },
404
+ {
405
+ "epoch": 2.19,
406
+ "learning_rate": 0.0003,
407
+ "loss": 0.6318,
408
+ "step": 59
409
+ },
410
+ {
411
+ "epoch": 2.22,
412
+ "learning_rate": 0.0003,
413
+ "loss": 0.6325,
414
+ "step": 60
415
+ },
416
+ {
417
+ "epoch": 2.22,
418
+ "eval_accuracy": 0.22314778940117955,
419
+ "eval_loss": 0.8458040952682495,
420
+ "eval_runtime": 43.5251,
421
+ "eval_samples_per_second": 0.827,
422
+ "eval_steps_per_second": 0.046,
423
+ "step": 60
424
+ },
425
+ {
426
+ "epoch": 2.26,
427
+ "learning_rate": 0.0003,
428
+ "loss": 0.6493,
429
+ "step": 61
430
+ },
431
+ {
432
+ "epoch": 2.3,
433
+ "learning_rate": 0.0003,
434
+ "loss": 0.5792,
435
+ "step": 62
436
+ },
437
+ {
438
+ "epoch": 2.33,
439
+ "learning_rate": 0.0003,
440
+ "loss": 0.5246,
441
+ "step": 63
442
+ },
443
+ {
444
+ "epoch": 2.37,
445
+ "learning_rate": 0.0003,
446
+ "loss": 0.5364,
447
+ "step": 64
448
+ },
449
+ {
450
+ "epoch": 2.41,
451
+ "learning_rate": 0.0003,
452
+ "loss": 0.829,
453
+ "step": 65
454
+ },
455
+ {
456
+ "epoch": 2.44,
457
+ "learning_rate": 0.0003,
458
+ "loss": 0.5891,
459
+ "step": 66
460
+ },
461
+ {
462
+ "epoch": 2.48,
463
+ "learning_rate": 0.0003,
464
+ "loss": 0.5092,
465
+ "step": 67
466
+ },
467
+ {
468
+ "epoch": 2.52,
469
+ "learning_rate": 0.0003,
470
+ "loss": 0.7564,
471
+ "step": 68
472
+ },
473
+ {
474
+ "epoch": 2.56,
475
+ "learning_rate": 0.0003,
476
+ "loss": 0.747,
477
+ "step": 69
478
+ },
479
+ {
480
+ "epoch": 2.59,
481
+ "learning_rate": 0.0003,
482
+ "loss": 0.6826,
483
+ "step": 70
484
+ },
485
+ {
486
+ "epoch": 2.59,
487
+ "eval_accuracy": 0.222168410176934,
488
+ "eval_loss": 0.8560571670532227,
489
+ "eval_runtime": 43.3441,
490
+ "eval_samples_per_second": 0.831,
491
+ "eval_steps_per_second": 0.046,
492
+ "step": 70
493
+ },
494
+ {
495
+ "epoch": 2.63,
496
+ "learning_rate": 0.0003,
497
+ "loss": 0.7208,
498
+ "step": 71
499
+ },
500
+ {
501
+ "epoch": 2.67,
502
+ "learning_rate": 0.0003,
503
+ "loss": 0.7304,
504
+ "step": 72
505
+ },
506
+ {
507
+ "epoch": 2.7,
508
+ "learning_rate": 0.0003,
509
+ "loss": 0.5485,
510
+ "step": 73
511
+ },
512
+ {
513
+ "epoch": 2.74,
514
+ "learning_rate": 0.0003,
515
+ "loss": 0.5899,
516
+ "step": 74
517
+ },
518
+ {
519
+ "epoch": 2.78,
520
+ "learning_rate": 0.0003,
521
+ "loss": 0.5291,
522
+ "step": 75
523
+ },
524
+ {
525
+ "epoch": 2.81,
526
+ "learning_rate": 0.0003,
527
+ "loss": 0.6907,
528
+ "step": 76
529
+ },
530
+ {
531
+ "epoch": 2.85,
532
+ "learning_rate": 0.0003,
533
+ "loss": 0.5826,
534
+ "step": 77
535
+ },
536
+ {
537
+ "epoch": 2.89,
538
+ "learning_rate": 0.0003,
539
+ "loss": 0.5553,
540
+ "step": 78
541
+ },
542
+ {
543
+ "epoch": 2.93,
544
+ "learning_rate": 0.0003,
545
+ "loss": 0.6393,
546
+ "step": 79
547
+ },
548
+ {
549
+ "epoch": 2.96,
550
+ "learning_rate": 0.0003,
551
+ "loss": 0.5822,
552
+ "step": 80
553
+ },
554
+ {
555
+ "epoch": 2.96,
556
+ "eval_accuracy": 0.2210275948168238,
557
+ "eval_loss": 0.8713862895965576,
558
+ "eval_runtime": 42.5816,
559
+ "eval_samples_per_second": 0.845,
560
+ "eval_steps_per_second": 0.047,
561
+ "step": 80
562
+ },
563
+ {
564
+ "epoch": 3.0,
565
+ "learning_rate": 0.0003,
566
+ "loss": 0.5126,
567
+ "step": 81
568
+ }
569
+ ],
570
+ "logging_steps": 1.0,
571
+ "max_steps": 81,
572
+ "num_input_tokens_seen": 0,
573
+ "num_train_epochs": 3,
574
+ "save_steps": 500,
575
+ "total_flos": 10840779079680.0,
576
+ "train_batch_size": 2,
577
+ "trial_name": null,
578
+ "trial_params": null
579
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad1abbd75098df34d023ce85323be633e48290cfa0ac4c558e4e24db7d2397ea
3
+ size 6904