dvdmrs09 commited on
Commit
dddc289
·
verified ·
1 Parent(s): aafefe0

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +181 -0
  3. adapter_config.json +33 -0
  4. adapter_model.bin +3 -0
  5. checkpoint-40/README.md +202 -0
  6. checkpoint-40/adapter_config.json +33 -0
  7. checkpoint-40/adapter_model.safetensors +3 -0
  8. checkpoint-40/global_step40/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-40/global_step40/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-40/global_step40/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-40/global_step40/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-40/global_step40/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-40/latest +1 -0
  14. checkpoint-40/rng_state_0.pth +3 -0
  15. checkpoint-40/rng_state_1.pth +3 -0
  16. checkpoint-40/rng_state_2.pth +3 -0
  17. checkpoint-40/rng_state_3.pth +3 -0
  18. checkpoint-40/scheduler.pt +3 -0
  19. checkpoint-40/trainer_state.json +469 -0
  20. checkpoint-40/training_args.bin +3 -0
  21. checkpoint-40/zero_to_fp32.py +592 -0
  22. checkpoint-64/README.md +202 -0
  23. checkpoint-64/adapter_config.json +33 -0
  24. checkpoint-64/adapter_model.safetensors +3 -0
  25. checkpoint-64/global_step64/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  26. checkpoint-64/global_step64/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  27. checkpoint-64/global_step64/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  28. checkpoint-64/global_step64/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  29. checkpoint-64/global_step64/mp_rank_00_model_states.pt +3 -0
  30. checkpoint-64/latest +1 -0
  31. checkpoint-64/rng_state_0.pth +3 -0
  32. checkpoint-64/rng_state_1.pth +3 -0
  33. checkpoint-64/rng_state_2.pth +3 -0
  34. checkpoint-64/rng_state_3.pth +3 -0
  35. checkpoint-64/scheduler.pt +3 -0
  36. checkpoint-64/trainer_state.json +733 -0
  37. checkpoint-64/training_args.bin +3 -0
  38. checkpoint-64/zero_to_fp32.py +592 -0
  39. checkpoint-72/README.md +202 -0
  40. checkpoint-72/adapter_config.json +33 -0
  41. checkpoint-72/adapter_model.safetensors +3 -0
  42. checkpoint-72/global_step72/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  43. checkpoint-72/global_step72/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  44. checkpoint-72/global_step72/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-72/global_step72/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  46. checkpoint-72/global_step72/mp_rank_00_model_states.pt +3 -0
  47. checkpoint-72/latest +1 -0
  48. checkpoint-72/rng_state_0.pth +3 -0
  49. checkpoint-72/rng_state_1.pth +3 -0
  50. checkpoint-72/rng_state_2.pth +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: google/gemma-7b
7
+ model-index:
8
+ - name: gemma-python
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # use google/gemma-7b if you have access
21
+ base_model: google/gemma-7b
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ # huggingface repo
31
+ datasets:
32
+ - path: ./dataset/data1.jsonl
33
+ type: input_output
34
+ val_set_size: 0.1
35
+ output_dir: ./gemma-python
36
+
37
+ adapter: qlora
38
+ lora_r: 32
39
+ lora_alpha: 16
40
+ lora_dropout: 0.05
41
+ lora_target_linear: true
42
+
43
+ sequence_len: 4096
44
+ sample_packing: false
45
+ pad_to_sequence_len: true
46
+
47
+ wandb_project:
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name:
51
+ wandb_log_model:
52
+
53
+
54
+ gradient_accumulation_steps: 3
55
+ micro_batch_size: 2
56
+ num_epochs: 10
57
+ optimizer: adamw_bnb_8bit
58
+ lr_scheduler: cosine
59
+ learning_rate: 0.0002
60
+
61
+ train_on_inputs: false
62
+ group_by_length: false
63
+ bf16: auto
64
+ fp16:
65
+ tf32: false
66
+
67
+ gradient_checkpointing: true
68
+ early_stopping_patience:
69
+ resume_from_checkpoint:
70
+ local_rank:
71
+ logging_steps: 1
72
+ xformers_attention:
73
+ flash_attention: true
74
+
75
+ warmup_ratio: 0.1
76
+ evals_per_epoch: 4
77
+ eval_table_size:
78
+ eval_max_new_tokens: 128
79
+ saves_per_epoch: 1
80
+ debug:
81
+ deepspeed: deepspeed_configs/zero1.json
82
+ weight_decay: 0.0
83
+ fsdp:
84
+ fsdp_config:
85
+ special_tokens:
86
+
87
+ ```
88
+
89
+ </details><br>
90
+
91
+ # gemma-python
92
+
93
+ This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset.
94
+ It achieves the following results on the evaluation set:
95
+ - Loss: 2.1143
96
+
97
+ ## Model description
98
+
99
+ More information needed
100
+
101
+ ## Intended uses & limitations
102
+
103
+ More information needed
104
+
105
+ ## Training and evaluation data
106
+
107
+ More information needed
108
+
109
+ ## Training procedure
110
+
111
+ ### Training hyperparameters
112
+
113
+ The following hyperparameters were used during training:
114
+ - learning_rate: 0.0002
115
+ - train_batch_size: 2
116
+ - eval_batch_size: 2
117
+ - seed: 42
118
+ - distributed_type: multi-GPU
119
+ - num_devices: 4
120
+ - gradient_accumulation_steps: 3
121
+ - total_train_batch_size: 24
122
+ - total_eval_batch_size: 8
123
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
124
+ - lr_scheduler_type: cosine
125
+ - lr_scheduler_warmup_steps: 2
126
+ - num_epochs: 10
127
+
128
+ ### Training results
129
+
130
+ | Training Loss | Epoch | Step | Validation Loss |
131
+ |:-------------:|:-----:|:----:|:---------------:|
132
+ | 19.0016 | 0.12 | 1 | 18.6992 |
133
+ | 19.4686 | 0.25 | 2 | 16.2578 |
134
+ | 11.468 | 0.5 | 4 | 8.2891 |
135
+ | 7.5305 | 0.75 | 6 | 5.8847 |
136
+ | 5.7572 | 1.0 | 8 | 4.3635 |
137
+ | 4.3903 | 1.25 | 10 | 3.2849 |
138
+ | 2.9497 | 1.5 | 12 | 2.8539 |
139
+ | 2.8738 | 1.75 | 14 | 2.6203 |
140
+ | 2.7298 | 2.0 | 16 | 2.4534 |
141
+ | 2.4284 | 2.25 | 18 | 2.3077 |
142
+ | 2.394 | 2.5 | 20 | 2.1876 |
143
+ | 2.069 | 2.75 | 22 | 2.1294 |
144
+ | 1.9355 | 3.0 | 24 | 2.1048 |
145
+ | 1.9635 | 3.25 | 26 | 2.0707 |
146
+ | 2.092 | 3.5 | 28 | 2.0596 |
147
+ | 1.9675 | 3.75 | 30 | 2.0287 |
148
+ | 1.9693 | 4.0 | 32 | 2.0220 |
149
+ | 2.0198 | 4.25 | 34 | 2.0124 |
150
+ | 1.9357 | 4.5 | 36 | 1.9946 |
151
+ | 1.8147 | 4.75 | 38 | 1.9979 |
152
+ | 1.9084 | 5.0 | 40 | 1.9751 |
153
+ | 1.6678 | 5.25 | 42 | 2.0049 |
154
+ | 1.7639 | 5.5 | 44 | 1.9885 |
155
+ | 1.7475 | 5.75 | 46 | 1.9777 |
156
+ | 1.4848 | 6.0 | 48 | 1.9939 |
157
+ | 1.3065 | 6.25 | 50 | 2.0264 |
158
+ | 1.4792 | 6.5 | 52 | 2.0125 |
159
+ | 1.4233 | 6.75 | 54 | 2.0204 |
160
+ | 1.2534 | 7.0 | 56 | 2.0318 |
161
+ | 1.2409 | 7.25 | 58 | 2.0445 |
162
+ | 1.4309 | 7.5 | 60 | 2.0641 |
163
+ | 1.1622 | 7.75 | 62 | 2.0633 |
164
+ | 1.228 | 8.0 | 64 | 2.0930 |
165
+ | 1.3076 | 8.25 | 66 | 2.1077 |
166
+ | 1.2323 | 8.5 | 68 | 2.1060 |
167
+ | 1.1635 | 8.75 | 70 | 2.1039 |
168
+ | 1.261 | 9.0 | 72 | 2.1068 |
169
+ | 1.0122 | 9.25 | 74 | 2.1110 |
170
+ | 1.218 | 9.5 | 76 | 2.1180 |
171
+ | 1.1022 | 9.75 | 78 | 2.1226 |
172
+ | 1.2072 | 10.0 | 80 | 2.1143 |
173
+
174
+
175
+ ### Framework versions
176
+
177
+ - PEFT 0.9.0
178
+ - Transformers 4.38.2
179
+ - Pytorch 2.2.1
180
+ - Datasets 2.18.0
181
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "gate_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56027d240d1c3a71c42694a8d10be6ce43895d6fcf1f952d2c724a9e87326474
3
+ size 200078074
checkpoint-40/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-40/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "gate_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-40/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1aed72bc91825c6eaf1575f0a5c94f50d56417ca5b53f0b81cce29048b6ab70
3
+ size 200068904
checkpoint-40/global_step40/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c24cda968c111802eab57451e1860053f2e38fd65f26135f266c9ffeac134c45
3
+ size 150126608
checkpoint-40/global_step40/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad69a773e6fc3a934d7bdb9d232fc948270842ba6fc8efbf370876ffa0f7e03
3
+ size 150126672
checkpoint-40/global_step40/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbefc165cb203c96d8e832780b04524237e7b6eecc71d7ff978399d0d0c545ee
3
+ size 150126736
checkpoint-40/global_step40/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bfd9defda8117e8665d598fff4c10cf611313f809395d507fbfc7658fbf5a9e
3
+ size 150126736
checkpoint-40/global_step40/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408829abb39ec8d398d4973de44b3946c13a8327253229249eaf1572b03d1b54
3
+ size 1896781478
checkpoint-40/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step40
checkpoint-40/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa8f3ba412a4ede1340e4612f378f735f109cbf5a004a7ef3413d51993099c5
3
+ size 15024
checkpoint-40/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d540901c9ea15d4cbbe676b69891f7b748ca516ed58e850a2fd4e6d02d301a10
3
+ size 15024
checkpoint-40/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c0baa6c67b9316790653f049223543efdc12d27422fe3e39b0b8ac11b1af04e
3
+ size 15024
checkpoint-40/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f6491f57903cffa60cc5ed0ffde720e7ccebee6b0c3dcccdb9c0e1d27509c70
3
+ size 15024
checkpoint-40/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9fe9aa3a69b7aa00ab6c2c283052e530e526040db3d71112487efe44649fc62
3
+ size 1064
checkpoint-40/trainer_state.json ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.9750508069992065,
3
+ "best_model_checkpoint": "./gemma-python/checkpoint-40",
4
+ "epoch": 5.0,
5
+ "eval_steps": 2,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.12,
13
+ "grad_norm": 40.636978402335416,
14
+ "learning_rate": 0.0001,
15
+ "loss": 19.0016,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.12,
20
+ "eval_loss": 18.6992130279541,
21
+ "eval_runtime": 2.881,
22
+ "eval_samples_per_second": 7.289,
23
+ "eval_steps_per_second": 1.041,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.25,
28
+ "grad_norm": 41.61053527062362,
29
+ "learning_rate": 0.0002,
30
+ "loss": 19.4686,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.25,
35
+ "eval_loss": 16.257802963256836,
36
+ "eval_runtime": 2.9111,
37
+ "eval_samples_per_second": 7.214,
38
+ "eval_steps_per_second": 1.031,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.38,
43
+ "grad_norm": 28.704819713850974,
44
+ "learning_rate": 0.00019991889981715698,
45
+ "loss": 13.2303,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.5,
50
+ "grad_norm": 26.40444243073739,
51
+ "learning_rate": 0.00019967573081342103,
52
+ "loss": 11.468,
53
+ "step": 4
54
+ },
55
+ {
56
+ "epoch": 0.5,
57
+ "eval_loss": 8.28911018371582,
58
+ "eval_runtime": 2.9257,
59
+ "eval_samples_per_second": 7.178,
60
+ "eval_steps_per_second": 1.025,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.62,
65
+ "grad_norm": 12.912981323843146,
66
+ "learning_rate": 0.0001992708874098054,
67
+ "loss": 9.3107,
68
+ "step": 5
69
+ },
70
+ {
71
+ "epoch": 0.75,
72
+ "grad_norm": 7.943058500648636,
73
+ "learning_rate": 0.00019870502626379127,
74
+ "loss": 7.5305,
75
+ "step": 6
76
+ },
77
+ {
78
+ "epoch": 0.75,
79
+ "eval_loss": 5.884701728820801,
80
+ "eval_runtime": 2.9479,
81
+ "eval_samples_per_second": 7.124,
82
+ "eval_steps_per_second": 1.018,
83
+ "step": 6
84
+ },
85
+ {
86
+ "epoch": 0.88,
87
+ "grad_norm": 6.267657551985817,
88
+ "learning_rate": 0.00019797906520422677,
89
+ "loss": 6.6492,
90
+ "step": 7
91
+ },
92
+ {
93
+ "epoch": 1.0,
94
+ "grad_norm": 5.0825555341832365,
95
+ "learning_rate": 0.0001970941817426052,
96
+ "loss": 5.7572,
97
+ "step": 8
98
+ },
99
+ {
100
+ "epoch": 1.0,
101
+ "eval_loss": 4.363473892211914,
102
+ "eval_runtime": 2.9653,
103
+ "eval_samples_per_second": 7.082,
104
+ "eval_steps_per_second": 1.012,
105
+ "step": 8
106
+ },
107
+ {
108
+ "epoch": 1.12,
109
+ "grad_norm": 4.88565620317727,
110
+ "learning_rate": 0.00019605181116313724,
111
+ "loss": 4.5414,
112
+ "step": 9
113
+ },
114
+ {
115
+ "epoch": 1.25,
116
+ "grad_norm": 5.0847008955317605,
117
+ "learning_rate": 0.00019485364419471454,
118
+ "loss": 4.3903,
119
+ "step": 10
120
+ },
121
+ {
122
+ "epoch": 1.25,
123
+ "eval_loss": 3.284867763519287,
124
+ "eval_runtime": 2.9746,
125
+ "eval_samples_per_second": 7.06,
126
+ "eval_steps_per_second": 1.009,
127
+ "step": 10
128
+ },
129
+ {
130
+ "epoch": 1.38,
131
+ "grad_norm": 3.424587898800574,
132
+ "learning_rate": 0.0001935016242685415,
133
+ "loss": 3.79,
134
+ "step": 11
135
+ },
136
+ {
137
+ "epoch": 1.5,
138
+ "grad_norm": 2.7255824385278506,
139
+ "learning_rate": 0.00019199794436588243,
140
+ "loss": 2.9497,
141
+ "step": 12
142
+ },
143
+ {
144
+ "epoch": 1.5,
145
+ "eval_loss": 2.853942394256592,
146
+ "eval_runtime": 2.9866,
147
+ "eval_samples_per_second": 7.031,
148
+ "eval_steps_per_second": 1.004,
149
+ "step": 12
150
+ },
151
+ {
152
+ "epoch": 1.62,
153
+ "grad_norm": 2.1001906898750624,
154
+ "learning_rate": 0.00019034504346103823,
155
+ "loss": 2.7728,
156
+ "step": 13
157
+ },
158
+ {
159
+ "epoch": 1.75,
160
+ "grad_norm": 1.9200021565941778,
161
+ "learning_rate": 0.000188545602565321,
162
+ "loss": 2.8738,
163
+ "step": 14
164
+ },
165
+ {
166
+ "epoch": 1.75,
167
+ "eval_loss": 2.62028431892395,
168
+ "eval_runtime": 2.9982,
169
+ "eval_samples_per_second": 7.004,
170
+ "eval_steps_per_second": 1.001,
171
+ "step": 14
172
+ },
173
+ {
174
+ "epoch": 1.88,
175
+ "grad_norm": 1.8837224890225774,
176
+ "learning_rate": 0.00018660254037844388,
177
+ "loss": 3.0787,
178
+ "step": 15
179
+ },
180
+ {
181
+ "epoch": 2.0,
182
+ "grad_norm": 1.8929687978608318,
183
+ "learning_rate": 0.0001845190085543795,
184
+ "loss": 2.7298,
185
+ "step": 16
186
+ },
187
+ {
188
+ "epoch": 2.0,
189
+ "eval_loss": 2.453444242477417,
190
+ "eval_runtime": 2.9964,
191
+ "eval_samples_per_second": 7.008,
192
+ "eval_steps_per_second": 1.001,
193
+ "step": 16
194
+ },
195
+ {
196
+ "epoch": 2.12,
197
+ "grad_norm": 1.3652069569291694,
198
+ "learning_rate": 0.00018229838658936564,
199
+ "loss": 2.5967,
200
+ "step": 17
201
+ },
202
+ {
203
+ "epoch": 2.25,
204
+ "grad_norm": 2.4263600812149417,
205
+ "learning_rate": 0.00017994427634035015,
206
+ "loss": 2.4284,
207
+ "step": 18
208
+ },
209
+ {
210
+ "epoch": 2.25,
211
+ "eval_loss": 2.307706832885742,
212
+ "eval_runtime": 2.9963,
213
+ "eval_samples_per_second": 7.009,
214
+ "eval_steps_per_second": 1.001,
215
+ "step": 18
216
+ },
217
+ {
218
+ "epoch": 2.38,
219
+ "grad_norm": 2.5673391658400053,
220
+ "learning_rate": 0.00017746049618276545,
221
+ "loss": 2.6721,
222
+ "step": 19
223
+ },
224
+ {
225
+ "epoch": 2.5,
226
+ "grad_norm": 2.2252437500899656,
227
+ "learning_rate": 0.00017485107481711012,
228
+ "loss": 2.394,
229
+ "step": 20
230
+ },
231
+ {
232
+ "epoch": 2.5,
233
+ "eval_loss": 2.187636137008667,
234
+ "eval_runtime": 2.9975,
235
+ "eval_samples_per_second": 7.006,
236
+ "eval_steps_per_second": 1.001,
237
+ "step": 20
238
+ },
239
+ {
240
+ "epoch": 2.62,
241
+ "grad_norm": 2.345233295279928,
242
+ "learning_rate": 0.00017212024473438147,
243
+ "loss": 2.3972,
244
+ "step": 21
245
+ },
246
+ {
247
+ "epoch": 2.75,
248
+ "grad_norm": 1.1122620317353238,
249
+ "learning_rate": 0.00016927243535095997,
250
+ "loss": 2.069,
251
+ "step": 22
252
+ },
253
+ {
254
+ "epoch": 2.75,
255
+ "eval_loss": 2.1294100284576416,
256
+ "eval_runtime": 2.993,
257
+ "eval_samples_per_second": 7.016,
258
+ "eval_steps_per_second": 1.002,
259
+ "step": 22
260
+ },
261
+ {
262
+ "epoch": 2.88,
263
+ "grad_norm": 2.8270209249093803,
264
+ "learning_rate": 0.00016631226582407952,
265
+ "loss": 2.211,
266
+ "step": 23
267
+ },
268
+ {
269
+ "epoch": 3.0,
270
+ "grad_norm": 7.323169716541166,
271
+ "learning_rate": 0.00016324453755953773,
272
+ "loss": 1.9355,
273
+ "step": 24
274
+ },
275
+ {
276
+ "epoch": 3.0,
277
+ "eval_loss": 2.1047682762145996,
278
+ "eval_runtime": 2.9871,
279
+ "eval_samples_per_second": 7.03,
280
+ "eval_steps_per_second": 1.004,
281
+ "step": 24
282
+ },
283
+ {
284
+ "epoch": 3.12,
285
+ "grad_norm": 1.9938311808450486,
286
+ "learning_rate": 0.0001600742264237979,
287
+ "loss": 2.1962,
288
+ "step": 25
289
+ },
290
+ {
291
+ "epoch": 3.25,
292
+ "grad_norm": 3.330986691029466,
293
+ "learning_rate": 0.00015680647467311557,
294
+ "loss": 1.9635,
295
+ "step": 26
296
+ },
297
+ {
298
+ "epoch": 3.25,
299
+ "eval_loss": 2.0707101821899414,
300
+ "eval_runtime": 2.9895,
301
+ "eval_samples_per_second": 7.025,
302
+ "eval_steps_per_second": 1.004,
303
+ "step": 26
304
+ },
305
+ {
306
+ "epoch": 3.38,
307
+ "grad_norm": 2.0371854480792178,
308
+ "learning_rate": 0.0001534465826127801,
309
+ "loss": 2.2319,
310
+ "step": 27
311
+ },
312
+ {
313
+ "epoch": 3.5,
314
+ "grad_norm": 3.2163831286077653,
315
+ "learning_rate": 0.00015000000000000001,
316
+ "loss": 2.092,
317
+ "step": 28
318
+ },
319
+ {
320
+ "epoch": 3.5,
321
+ "eval_loss": 2.059619426727295,
322
+ "eval_runtime": 2.9996,
323
+ "eval_samples_per_second": 7.001,
324
+ "eval_steps_per_second": 1.0,
325
+ "step": 28
326
+ },
327
+ {
328
+ "epoch": 3.62,
329
+ "grad_norm": 2.853987323853131,
330
+ "learning_rate": 0.00014647231720437686,
331
+ "loss": 1.9182,
332
+ "step": 29
333
+ },
334
+ {
335
+ "epoch": 3.75,
336
+ "grad_norm": 2.2997509863024352,
337
+ "learning_rate": 0.00014286925614030542,
338
+ "loss": 1.9675,
339
+ "step": 30
340
+ },
341
+ {
342
+ "epoch": 3.75,
343
+ "eval_loss": 2.0287458896636963,
344
+ "eval_runtime": 2.9966,
345
+ "eval_samples_per_second": 7.008,
346
+ "eval_steps_per_second": 1.001,
347
+ "step": 30
348
+ },
349
+ {
350
+ "epoch": 3.88,
351
+ "grad_norm": 2.2770679758385244,
352
+ "learning_rate": 0.00013919666098600753,
353
+ "loss": 1.9815,
354
+ "step": 31
355
+ },
356
+ {
357
+ "epoch": 4.0,
358
+ "grad_norm": 0.8553765652252152,
359
+ "learning_rate": 0.00013546048870425356,
360
+ "loss": 1.9693,
361
+ "step": 32
362
+ },
363
+ {
364
+ "epoch": 4.0,
365
+ "eval_loss": 2.022012710571289,
366
+ "eval_runtime": 2.9895,
367
+ "eval_samples_per_second": 7.025,
368
+ "eval_steps_per_second": 1.004,
369
+ "step": 32
370
+ },
371
+ {
372
+ "epoch": 4.12,
373
+ "grad_norm": 3.8094922067262336,
374
+ "learning_rate": 0.00013166679938014726,
375
+ "loss": 1.6479,
376
+ "step": 33
377
+ },
378
+ {
379
+ "epoch": 4.25,
380
+ "grad_norm": 3.5435911597121277,
381
+ "learning_rate": 0.0001278217463916453,
382
+ "loss": 2.0198,
383
+ "step": 34
384
+ },
385
+ {
386
+ "epoch": 4.25,
387
+ "eval_loss": 2.012432336807251,
388
+ "eval_runtime": 2.9987,
389
+ "eval_samples_per_second": 7.003,
390
+ "eval_steps_per_second": 1.0,
391
+ "step": 34
392
+ },
393
+ {
394
+ "epoch": 4.38,
395
+ "grad_norm": 1.4676241516417539,
396
+ "learning_rate": 0.0001239315664287558,
397
+ "loss": 1.7496,
398
+ "step": 35
399
+ },
400
+ {
401
+ "epoch": 4.5,
402
+ "grad_norm": 1.4772602834377506,
403
+ "learning_rate": 0.00012000256937760445,
404
+ "loss": 1.9357,
405
+ "step": 36
406
+ },
407
+ {
408
+ "epoch": 4.5,
409
+ "eval_loss": 1.9945744276046753,
410
+ "eval_runtime": 3.0019,
411
+ "eval_samples_per_second": 6.995,
412
+ "eval_steps_per_second": 0.999,
413
+ "step": 36
414
+ },
415
+ {
416
+ "epoch": 4.62,
417
+ "grad_norm": 0.8198622785029981,
418
+ "learning_rate": 0.00011604112808577603,
419
+ "loss": 1.8365,
420
+ "step": 37
421
+ },
422
+ {
423
+ "epoch": 4.75,
424
+ "grad_norm": 2.5267989029749556,
425
+ "learning_rate": 0.0001120536680255323,
426
+ "loss": 1.8147,
427
+ "step": 38
428
+ },
429
+ {
430
+ "epoch": 4.75,
431
+ "eval_loss": 1.9979486465454102,
432
+ "eval_runtime": 2.9865,
433
+ "eval_samples_per_second": 7.032,
434
+ "eval_steps_per_second": 1.005,
435
+ "step": 38
436
+ },
437
+ {
438
+ "epoch": 4.88,
439
+ "grad_norm": 1.2889515222114942,
440
+ "learning_rate": 0.00010804665687167262,
441
+ "loss": 1.6703,
442
+ "step": 39
443
+ },
444
+ {
445
+ "epoch": 5.0,
446
+ "grad_norm": 1.3474067788797102,
447
+ "learning_rate": 0.00010402659401094152,
448
+ "loss": 1.9084,
449
+ "step": 40
450
+ },
451
+ {
452
+ "epoch": 5.0,
453
+ "eval_loss": 1.9750508069992065,
454
+ "eval_runtime": 2.9945,
455
+ "eval_samples_per_second": 7.013,
456
+ "eval_steps_per_second": 1.002,
457
+ "step": 40
458
+ }
459
+ ],
460
+ "logging_steps": 1,
461
+ "max_steps": 80,
462
+ "num_input_tokens_seen": 0,
463
+ "num_train_epochs": 10,
464
+ "save_steps": 8,
465
+ "total_flos": 1.8523438033403904e+17,
466
+ "train_batch_size": 2,
467
+ "trial_name": null,
468
+ "trial_params": null
469
+ }
checkpoint-40/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbd3cdf0c7e847516177c465407e4f8b9cbcc9b8664e3b64c39191721cf5ef99
3
+ size 6776
checkpoint-40/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-64/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-64/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "gate_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-64/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3a309ee2731ba474e8a0458bdcea156d55a66ebac666c29ad3fe07d60d64949
3
+ size 200068904
checkpoint-64/global_step64/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69020befe25ce201249ca288824b860ccdd3a97b0dd6ddd5b05d33cd916509f2
3
+ size 150126608
checkpoint-64/global_step64/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51e2d6a8023dd55f29d5046f0a69aab1551a7139a1b644f60bc25a2a01b8a2a1
3
+ size 150126672
checkpoint-64/global_step64/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea33fc3eff7e1857897f2d9f6a166c00b0a4bf9e7f116c99878ca648cab421a0
3
+ size 150126736
checkpoint-64/global_step64/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5425cbcd7924377570973efd1db89165c62bcc2fc5a3fae5bad6f9e621f9e18
3
+ size 150126736
checkpoint-64/global_step64/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67f8431e72b92e00e8c035cce5cffc86e5601219db4c20919cfec992381dd225
3
+ size 1896781478
checkpoint-64/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step64
checkpoint-64/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9527b9b5ae29ac374c87db2096874998096d81acfc9d70d4bbaf48795fad788f
3
+ size 15024
checkpoint-64/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ffb943cf7bf621beffa16bb82712d440c7f94be3b7d0d0d4da79e0f0a2feac0
3
+ size 15024
checkpoint-64/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81a4e19888f9eb3b62dac0a0242272d66796d01b3f3212243c7701aa65eebf3c
3
+ size 15024
checkpoint-64/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd08e343faf2a38113c34dca2fd8802aaee14dc414d6e81008bf8ab9d8855859
3
+ size 15024
checkpoint-64/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81667d34dc03f7a0b89cbca2d657bfead11ac055747074bc43cccaf1feb58bbc
3
+ size 1064
checkpoint-64/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.9750508069992065,
3
+ "best_model_checkpoint": "./gemma-python/checkpoint-40",
4
+ "epoch": 8.0,
5
+ "eval_steps": 2,
6
+ "global_step": 64,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.12,
13
+ "grad_norm": 40.636978402335416,
14
+ "learning_rate": 0.0001,
15
+ "loss": 19.0016,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.12,
20
+ "eval_loss": 18.6992130279541,
21
+ "eval_runtime": 2.881,
22
+ "eval_samples_per_second": 7.289,
23
+ "eval_steps_per_second": 1.041,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.25,
28
+ "grad_norm": 41.61053527062362,
29
+ "learning_rate": 0.0002,
30
+ "loss": 19.4686,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.25,
35
+ "eval_loss": 16.257802963256836,
36
+ "eval_runtime": 2.9111,
37
+ "eval_samples_per_second": 7.214,
38
+ "eval_steps_per_second": 1.031,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.38,
43
+ "grad_norm": 28.704819713850974,
44
+ "learning_rate": 0.00019991889981715698,
45
+ "loss": 13.2303,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.5,
50
+ "grad_norm": 26.40444243073739,
51
+ "learning_rate": 0.00019967573081342103,
52
+ "loss": 11.468,
53
+ "step": 4
54
+ },
55
+ {
56
+ "epoch": 0.5,
57
+ "eval_loss": 8.28911018371582,
58
+ "eval_runtime": 2.9257,
59
+ "eval_samples_per_second": 7.178,
60
+ "eval_steps_per_second": 1.025,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.62,
65
+ "grad_norm": 12.912981323843146,
66
+ "learning_rate": 0.0001992708874098054,
67
+ "loss": 9.3107,
68
+ "step": 5
69
+ },
70
+ {
71
+ "epoch": 0.75,
72
+ "grad_norm": 7.943058500648636,
73
+ "learning_rate": 0.00019870502626379127,
74
+ "loss": 7.5305,
75
+ "step": 6
76
+ },
77
+ {
78
+ "epoch": 0.75,
79
+ "eval_loss": 5.884701728820801,
80
+ "eval_runtime": 2.9479,
81
+ "eval_samples_per_second": 7.124,
82
+ "eval_steps_per_second": 1.018,
83
+ "step": 6
84
+ },
85
+ {
86
+ "epoch": 0.88,
87
+ "grad_norm": 6.267657551985817,
88
+ "learning_rate": 0.00019797906520422677,
89
+ "loss": 6.6492,
90
+ "step": 7
91
+ },
92
+ {
93
+ "epoch": 1.0,
94
+ "grad_norm": 5.0825555341832365,
95
+ "learning_rate": 0.0001970941817426052,
96
+ "loss": 5.7572,
97
+ "step": 8
98
+ },
99
+ {
100
+ "epoch": 1.0,
101
+ "eval_loss": 4.363473892211914,
102
+ "eval_runtime": 2.9653,
103
+ "eval_samples_per_second": 7.082,
104
+ "eval_steps_per_second": 1.012,
105
+ "step": 8
106
+ },
107
+ {
108
+ "epoch": 1.12,
109
+ "grad_norm": 4.88565620317727,
110
+ "learning_rate": 0.00019605181116313724,
111
+ "loss": 4.5414,
112
+ "step": 9
113
+ },
114
+ {
115
+ "epoch": 1.25,
116
+ "grad_norm": 5.0847008955317605,
117
+ "learning_rate": 0.00019485364419471454,
118
+ "loss": 4.3903,
119
+ "step": 10
120
+ },
121
+ {
122
+ "epoch": 1.25,
123
+ "eval_loss": 3.284867763519287,
124
+ "eval_runtime": 2.9746,
125
+ "eval_samples_per_second": 7.06,
126
+ "eval_steps_per_second": 1.009,
127
+ "step": 10
128
+ },
129
+ {
130
+ "epoch": 1.38,
131
+ "grad_norm": 3.424587898800574,
132
+ "learning_rate": 0.0001935016242685415,
133
+ "loss": 3.79,
134
+ "step": 11
135
+ },
136
+ {
137
+ "epoch": 1.5,
138
+ "grad_norm": 2.7255824385278506,
139
+ "learning_rate": 0.00019199794436588243,
140
+ "loss": 2.9497,
141
+ "step": 12
142
+ },
143
+ {
144
+ "epoch": 1.5,
145
+ "eval_loss": 2.853942394256592,
146
+ "eval_runtime": 2.9866,
147
+ "eval_samples_per_second": 7.031,
148
+ "eval_steps_per_second": 1.004,
149
+ "step": 12
150
+ },
151
+ {
152
+ "epoch": 1.62,
153
+ "grad_norm": 2.1001906898750624,
154
+ "learning_rate": 0.00019034504346103823,
155
+ "loss": 2.7728,
156
+ "step": 13
157
+ },
158
+ {
159
+ "epoch": 1.75,
160
+ "grad_norm": 1.9200021565941778,
161
+ "learning_rate": 0.000188545602565321,
162
+ "loss": 2.8738,
163
+ "step": 14
164
+ },
165
+ {
166
+ "epoch": 1.75,
167
+ "eval_loss": 2.62028431892395,
168
+ "eval_runtime": 2.9982,
169
+ "eval_samples_per_second": 7.004,
170
+ "eval_steps_per_second": 1.001,
171
+ "step": 14
172
+ },
173
+ {
174
+ "epoch": 1.88,
175
+ "grad_norm": 1.8837224890225774,
176
+ "learning_rate": 0.00018660254037844388,
177
+ "loss": 3.0787,
178
+ "step": 15
179
+ },
180
+ {
181
+ "epoch": 2.0,
182
+ "grad_norm": 1.8929687978608318,
183
+ "learning_rate": 0.0001845190085543795,
184
+ "loss": 2.7298,
185
+ "step": 16
186
+ },
187
+ {
188
+ "epoch": 2.0,
189
+ "eval_loss": 2.453444242477417,
190
+ "eval_runtime": 2.9964,
191
+ "eval_samples_per_second": 7.008,
192
+ "eval_steps_per_second": 1.001,
193
+ "step": 16
194
+ },
195
+ {
196
+ "epoch": 2.12,
197
+ "grad_norm": 1.3652069569291694,
198
+ "learning_rate": 0.00018229838658936564,
199
+ "loss": 2.5967,
200
+ "step": 17
201
+ },
202
+ {
203
+ "epoch": 2.25,
204
+ "grad_norm": 2.4263600812149417,
205
+ "learning_rate": 0.00017994427634035015,
206
+ "loss": 2.4284,
207
+ "step": 18
208
+ },
209
+ {
210
+ "epoch": 2.25,
211
+ "eval_loss": 2.307706832885742,
212
+ "eval_runtime": 2.9963,
213
+ "eval_samples_per_second": 7.009,
214
+ "eval_steps_per_second": 1.001,
215
+ "step": 18
216
+ },
217
+ {
218
+ "epoch": 2.38,
219
+ "grad_norm": 2.5673391658400053,
220
+ "learning_rate": 0.00017746049618276545,
221
+ "loss": 2.6721,
222
+ "step": 19
223
+ },
224
+ {
225
+ "epoch": 2.5,
226
+ "grad_norm": 2.2252437500899656,
227
+ "learning_rate": 0.00017485107481711012,
228
+ "loss": 2.394,
229
+ "step": 20
230
+ },
231
+ {
232
+ "epoch": 2.5,
233
+ "eval_loss": 2.187636137008667,
234
+ "eval_runtime": 2.9975,
235
+ "eval_samples_per_second": 7.006,
236
+ "eval_steps_per_second": 1.001,
237
+ "step": 20
238
+ },
239
+ {
240
+ "epoch": 2.62,
241
+ "grad_norm": 2.345233295279928,
242
+ "learning_rate": 0.00017212024473438147,
243
+ "loss": 2.3972,
244
+ "step": 21
245
+ },
246
+ {
247
+ "epoch": 2.75,
248
+ "grad_norm": 1.1122620317353238,
249
+ "learning_rate": 0.00016927243535095997,
250
+ "loss": 2.069,
251
+ "step": 22
252
+ },
253
+ {
254
+ "epoch": 2.75,
255
+ "eval_loss": 2.1294100284576416,
256
+ "eval_runtime": 2.993,
257
+ "eval_samples_per_second": 7.016,
258
+ "eval_steps_per_second": 1.002,
259
+ "step": 22
260
+ },
261
+ {
262
+ "epoch": 2.88,
263
+ "grad_norm": 2.8270209249093803,
264
+ "learning_rate": 0.00016631226582407952,
265
+ "loss": 2.211,
266
+ "step": 23
267
+ },
268
+ {
269
+ "epoch": 3.0,
270
+ "grad_norm": 7.323169716541166,
271
+ "learning_rate": 0.00016324453755953773,
272
+ "loss": 1.9355,
273
+ "step": 24
274
+ },
275
+ {
276
+ "epoch": 3.0,
277
+ "eval_loss": 2.1047682762145996,
278
+ "eval_runtime": 2.9871,
279
+ "eval_samples_per_second": 7.03,
280
+ "eval_steps_per_second": 1.004,
281
+ "step": 24
282
+ },
283
+ {
284
+ "epoch": 3.12,
285
+ "grad_norm": 1.9938311808450486,
286
+ "learning_rate": 0.0001600742264237979,
287
+ "loss": 2.1962,
288
+ "step": 25
289
+ },
290
+ {
291
+ "epoch": 3.25,
292
+ "grad_norm": 3.330986691029466,
293
+ "learning_rate": 0.00015680647467311557,
294
+ "loss": 1.9635,
295
+ "step": 26
296
+ },
297
+ {
298
+ "epoch": 3.25,
299
+ "eval_loss": 2.0707101821899414,
300
+ "eval_runtime": 2.9895,
301
+ "eval_samples_per_second": 7.025,
302
+ "eval_steps_per_second": 1.004,
303
+ "step": 26
304
+ },
305
+ {
306
+ "epoch": 3.38,
307
+ "grad_norm": 2.0371854480792178,
308
+ "learning_rate": 0.0001534465826127801,
309
+ "loss": 2.2319,
310
+ "step": 27
311
+ },
312
+ {
313
+ "epoch": 3.5,
314
+ "grad_norm": 3.2163831286077653,
315
+ "learning_rate": 0.00015000000000000001,
316
+ "loss": 2.092,
317
+ "step": 28
318
+ },
319
+ {
320
+ "epoch": 3.5,
321
+ "eval_loss": 2.059619426727295,
322
+ "eval_runtime": 2.9996,
323
+ "eval_samples_per_second": 7.001,
324
+ "eval_steps_per_second": 1.0,
325
+ "step": 28
326
+ },
327
+ {
328
+ "epoch": 3.62,
329
+ "grad_norm": 2.853987323853131,
330
+ "learning_rate": 0.00014647231720437686,
331
+ "loss": 1.9182,
332
+ "step": 29
333
+ },
334
+ {
335
+ "epoch": 3.75,
336
+ "grad_norm": 2.2997509863024352,
337
+ "learning_rate": 0.00014286925614030542,
338
+ "loss": 1.9675,
339
+ "step": 30
340
+ },
341
+ {
342
+ "epoch": 3.75,
343
+ "eval_loss": 2.0287458896636963,
344
+ "eval_runtime": 2.9966,
345
+ "eval_samples_per_second": 7.008,
346
+ "eval_steps_per_second": 1.001,
347
+ "step": 30
348
+ },
349
+ {
350
+ "epoch": 3.88,
351
+ "grad_norm": 2.2770679758385244,
352
+ "learning_rate": 0.00013919666098600753,
353
+ "loss": 1.9815,
354
+ "step": 31
355
+ },
356
+ {
357
+ "epoch": 4.0,
358
+ "grad_norm": 0.8553765652252152,
359
+ "learning_rate": 0.00013546048870425356,
360
+ "loss": 1.9693,
361
+ "step": 32
362
+ },
363
+ {
364
+ "epoch": 4.0,
365
+ "eval_loss": 2.022012710571289,
366
+ "eval_runtime": 2.9895,
367
+ "eval_samples_per_second": 7.025,
368
+ "eval_steps_per_second": 1.004,
369
+ "step": 32
370
+ },
371
+ {
372
+ "epoch": 4.12,
373
+ "grad_norm": 3.8094922067262336,
374
+ "learning_rate": 0.00013166679938014726,
375
+ "loss": 1.6479,
376
+ "step": 33
377
+ },
378
+ {
379
+ "epoch": 4.25,
380
+ "grad_norm": 3.5435911597121277,
381
+ "learning_rate": 0.0001278217463916453,
382
+ "loss": 2.0198,
383
+ "step": 34
384
+ },
385
+ {
386
+ "epoch": 4.25,
387
+ "eval_loss": 2.012432336807251,
388
+ "eval_runtime": 2.9987,
389
+ "eval_samples_per_second": 7.003,
390
+ "eval_steps_per_second": 1.0,
391
+ "step": 34
392
+ },
393
+ {
394
+ "epoch": 4.38,
395
+ "grad_norm": 1.4676241516417539,
396
+ "learning_rate": 0.0001239315664287558,
397
+ "loss": 1.7496,
398
+ "step": 35
399
+ },
400
+ {
401
+ "epoch": 4.5,
402
+ "grad_norm": 1.4772602834377506,
403
+ "learning_rate": 0.00012000256937760445,
404
+ "loss": 1.9357,
405
+ "step": 36
406
+ },
407
+ {
408
+ "epoch": 4.5,
409
+ "eval_loss": 1.9945744276046753,
410
+ "eval_runtime": 3.0019,
411
+ "eval_samples_per_second": 6.995,
412
+ "eval_steps_per_second": 0.999,
413
+ "step": 36
414
+ },
415
+ {
416
+ "epoch": 4.62,
417
+ "grad_norm": 0.8198622785029981,
418
+ "learning_rate": 0.00011604112808577603,
419
+ "loss": 1.8365,
420
+ "step": 37
421
+ },
422
+ {
423
+ "epoch": 4.75,
424
+ "grad_norm": 2.5267989029749556,
425
+ "learning_rate": 0.0001120536680255323,
426
+ "loss": 1.8147,
427
+ "step": 38
428
+ },
429
+ {
430
+ "epoch": 4.75,
431
+ "eval_loss": 1.9979486465454102,
432
+ "eval_runtime": 2.9865,
433
+ "eval_samples_per_second": 7.032,
434
+ "eval_steps_per_second": 1.005,
435
+ "step": 38
436
+ },
437
+ {
438
+ "epoch": 4.88,
439
+ "grad_norm": 1.2889515222114942,
440
+ "learning_rate": 0.00010804665687167262,
441
+ "loss": 1.6703,
442
+ "step": 39
443
+ },
444
+ {
445
+ "epoch": 5.0,
446
+ "grad_norm": 1.3474067788797102,
447
+ "learning_rate": 0.00010402659401094152,
448
+ "loss": 1.9084,
449
+ "step": 40
450
+ },
451
+ {
452
+ "epoch": 5.0,
453
+ "eval_loss": 1.9750508069992065,
454
+ "eval_runtime": 2.9945,
455
+ "eval_samples_per_second": 7.013,
456
+ "eval_steps_per_second": 1.002,
457
+ "step": 40
458
+ },
459
+ {
460
+ "epoch": 5.12,
461
+ "grad_norm": 1.320063776368443,
462
+ "learning_rate": 0.0001,
463
+ "loss": 1.6233,
464
+ "step": 41
465
+ },
466
+ {
467
+ "epoch": 5.25,
468
+ "grad_norm": 0.7858628087737163,
469
+ "learning_rate": 9.597340598905852e-05,
470
+ "loss": 1.6678,
471
+ "step": 42
472
+ },
473
+ {
474
+ "epoch": 5.25,
475
+ "eval_loss": 2.004897356033325,
476
+ "eval_runtime": 2.9946,
477
+ "eval_samples_per_second": 7.013,
478
+ "eval_steps_per_second": 1.002,
479
+ "step": 42
480
+ },
481
+ {
482
+ "epoch": 5.38,
483
+ "grad_norm": 1.149181462350102,
484
+ "learning_rate": 9.195334312832742e-05,
485
+ "loss": 1.5673,
486
+ "step": 43
487
+ },
488
+ {
489
+ "epoch": 5.5,
490
+ "grad_norm": 1.961547695831496,
491
+ "learning_rate": 8.79463319744677e-05,
492
+ "loss": 1.7639,
493
+ "step": 44
494
+ },
495
+ {
496
+ "epoch": 5.5,
497
+ "eval_loss": 1.9885122776031494,
498
+ "eval_runtime": 2.9905,
499
+ "eval_samples_per_second": 7.022,
500
+ "eval_steps_per_second": 1.003,
501
+ "step": 44
502
+ },
503
+ {
504
+ "epoch": 5.62,
505
+ "grad_norm": 0.794217334050356,
506
+ "learning_rate": 8.395887191422397e-05,
507
+ "loss": 1.6191,
508
+ "step": 45
509
+ },
510
+ {
511
+ "epoch": 5.75,
512
+ "grad_norm": 1.5568588659062292,
513
+ "learning_rate": 7.999743062239557e-05,
514
+ "loss": 1.7475,
515
+ "step": 46
516
+ },
517
+ {
518
+ "epoch": 5.75,
519
+ "eval_loss": 1.9777300357818604,
520
+ "eval_runtime": 2.9821,
521
+ "eval_samples_per_second": 7.042,
522
+ "eval_steps_per_second": 1.006,
523
+ "step": 46
524
+ },
525
+ {
526
+ "epoch": 5.88,
527
+ "grad_norm": 0.9110203190054421,
528
+ "learning_rate": 7.606843357124426e-05,
529
+ "loss": 1.5998,
530
+ "step": 47
531
+ },
532
+ {
533
+ "epoch": 6.0,
534
+ "grad_norm": 1.4501990937976796,
535
+ "learning_rate": 7.217825360835473e-05,
536
+ "loss": 1.4848,
537
+ "step": 48
538
+ },
539
+ {
540
+ "epoch": 6.0,
541
+ "eval_loss": 1.9939006567001343,
542
+ "eval_runtime": 2.9785,
543
+ "eval_samples_per_second": 7.05,
544
+ "eval_steps_per_second": 1.007,
545
+ "step": 48
546
+ },
547
+ {
548
+ "epoch": 6.12,
549
+ "grad_norm": 1.3413384555399062,
550
+ "learning_rate": 6.833320061985277e-05,
551
+ "loss": 1.5343,
552
+ "step": 49
553
+ },
554
+ {
555
+ "epoch": 6.25,
556
+ "grad_norm": 0.9844954583473513,
557
+ "learning_rate": 6.453951129574644e-05,
558
+ "loss": 1.3065,
559
+ "step": 50
560
+ },
561
+ {
562
+ "epoch": 6.25,
563
+ "eval_loss": 2.0264320373535156,
564
+ "eval_runtime": 2.9839,
565
+ "eval_samples_per_second": 7.038,
566
+ "eval_steps_per_second": 1.005,
567
+ "step": 50
568
+ },
569
+ {
570
+ "epoch": 6.38,
571
+ "grad_norm": 1.268663878876962,
572
+ "learning_rate": 6.080333901399251e-05,
573
+ "loss": 1.4153,
574
+ "step": 51
575
+ },
576
+ {
577
+ "epoch": 6.5,
578
+ "grad_norm": 1.1638516740810099,
579
+ "learning_rate": 5.713074385969457e-05,
580
+ "loss": 1.4792,
581
+ "step": 52
582
+ },
583
+ {
584
+ "epoch": 6.5,
585
+ "eval_loss": 2.012540817260742,
586
+ "eval_runtime": 2.9954,
587
+ "eval_samples_per_second": 7.011,
588
+ "eval_steps_per_second": 1.002,
589
+ "step": 52
590
+ },
591
+ {
592
+ "epoch": 6.62,
593
+ "grad_norm": 0.8956974540095054,
594
+ "learning_rate": 5.3527682795623146e-05,
595
+ "loss": 1.5184,
596
+ "step": 53
597
+ },
598
+ {
599
+ "epoch": 6.75,
600
+ "grad_norm": 0.8166104294104601,
601
+ "learning_rate": 5.000000000000002e-05,
602
+ "loss": 1.4233,
603
+ "step": 54
604
+ },
605
+ {
606
+ "epoch": 6.75,
607
+ "eval_loss": 2.0203704833984375,
608
+ "eval_runtime": 2.9966,
609
+ "eval_samples_per_second": 7.008,
610
+ "eval_steps_per_second": 1.001,
611
+ "step": 54
612
+ },
613
+ {
614
+ "epoch": 6.88,
615
+ "grad_norm": 1.2567309830006292,
616
+ "learning_rate": 4.6553417387219886e-05,
617
+ "loss": 1.5766,
618
+ "step": 55
619
+ },
620
+ {
621
+ "epoch": 7.0,
622
+ "grad_norm": 1.202021898168564,
623
+ "learning_rate": 4.3193525326884435e-05,
624
+ "loss": 1.2534,
625
+ "step": 56
626
+ },
627
+ {
628
+ "epoch": 7.0,
629
+ "eval_loss": 2.0317745208740234,
630
+ "eval_runtime": 2.9887,
631
+ "eval_samples_per_second": 7.027,
632
+ "eval_steps_per_second": 1.004,
633
+ "step": 56
634
+ },
635
+ {
636
+ "epoch": 7.12,
637
+ "grad_norm": 1.0179404054971375,
638
+ "learning_rate": 3.99257735762021e-05,
639
+ "loss": 1.3538,
640
+ "step": 57
641
+ },
642
+ {
643
+ "epoch": 7.25,
644
+ "grad_norm": 0.8024465225797554,
645
+ "learning_rate": 3.675546244046228e-05,
646
+ "loss": 1.2409,
647
+ "step": 58
648
+ },
649
+ {
650
+ "epoch": 7.25,
651
+ "eval_loss": 2.0444860458374023,
652
+ "eval_runtime": 2.9957,
653
+ "eval_samples_per_second": 7.01,
654
+ "eval_steps_per_second": 1.001,
655
+ "step": 58
656
+ },
657
+ {
658
+ "epoch": 7.38,
659
+ "grad_norm": 1.0938821440297672,
660
+ "learning_rate": 3.36877341759205e-05,
661
+ "loss": 1.2446,
662
+ "step": 59
663
+ },
664
+ {
665
+ "epoch": 7.5,
666
+ "grad_norm": 1.4397725924431397,
667
+ "learning_rate": 3.072756464904006e-05,
668
+ "loss": 1.4309,
669
+ "step": 60
670
+ },
671
+ {
672
+ "epoch": 7.5,
673
+ "eval_loss": 2.0641307830810547,
674
+ "eval_runtime": 3.0002,
675
+ "eval_samples_per_second": 6.999,
676
+ "eval_steps_per_second": 1.0,
677
+ "step": 60
678
+ },
679
+ {
680
+ "epoch": 7.62,
681
+ "grad_norm": 1.084317322881849,
682
+ "learning_rate": 2.7879755265618555e-05,
683
+ "loss": 1.4057,
684
+ "step": 61
685
+ },
686
+ {
687
+ "epoch": 7.75,
688
+ "grad_norm": 0.8921847488708302,
689
+ "learning_rate": 2.514892518288988e-05,
690
+ "loss": 1.1622,
691
+ "step": 62
692
+ },
693
+ {
694
+ "epoch": 7.75,
695
+ "eval_loss": 2.0632762908935547,
696
+ "eval_runtime": 2.9934,
697
+ "eval_samples_per_second": 7.015,
698
+ "eval_steps_per_second": 1.002,
699
+ "step": 62
700
+ },
701
+ {
702
+ "epoch": 7.88,
703
+ "grad_norm": 1.2733235220422945,
704
+ "learning_rate": 2.2539503817234553e-05,
705
+ "loss": 1.2667,
706
+ "step": 63
707
+ },
708
+ {
709
+ "epoch": 8.0,
710
+ "grad_norm": 1.01591405423162,
711
+ "learning_rate": 2.0055723659649904e-05,
712
+ "loss": 1.228,
713
+ "step": 64
714
+ },
715
+ {
716
+ "epoch": 8.0,
717
+ "eval_loss": 2.09301495552063,
718
+ "eval_runtime": 2.9938,
719
+ "eval_samples_per_second": 7.014,
720
+ "eval_steps_per_second": 1.002,
721
+ "step": 64
722
+ }
723
+ ],
724
+ "logging_steps": 1,
725
+ "max_steps": 80,
726
+ "num_input_tokens_seen": 0,
727
+ "num_train_epochs": 10,
728
+ "save_steps": 8,
729
+ "total_flos": 2.9637500853446246e+17,
730
+ "train_batch_size": 2,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
checkpoint-64/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbd3cdf0c7e847516177c465407e4f8b9cbcc9b8664e3b64c39191721cf5ef99
3
+ size 6776
checkpoint-64/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-72/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-72/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "gate_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-72/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44954d71c44b0b3a77c82c4e61cb154f0620626427991da9edec48e2006b123a
3
+ size 200068904
checkpoint-72/global_step72/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81fd6d1854d4065202f5faaf517a529c9babc13cbcdb54cfe6e80f75c3e68591
3
+ size 150126608
checkpoint-72/global_step72/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ddde495ae8fee1b1af3e50c77935ce1d2760a49a5fe0e32d48f88f54c6d4bad
3
+ size 150126672
checkpoint-72/global_step72/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfc74a5b5403785a3a238055defca1048acbeb8766ed3e1a7aa600ebd4408864
3
+ size 150126736
checkpoint-72/global_step72/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f4fcc5ebe0bd0b28c13562346884763ed07438fa1a6c030fce64c64395b3671
3
+ size 150126736
checkpoint-72/global_step72/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20a1e69a9ab961b6a4dd5f7cb8f604b17f89050e4fa1bf8665a541186272ede7
3
+ size 1896781478
checkpoint-72/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step72
checkpoint-72/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:668b3c267070e4954cf0fb4816322e2dc903d37f5a7200afaeffc177308dba71
3
+ size 15024
checkpoint-72/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac91d0dff53f6ec4da985ead857c455f6a2b5328e0d8d6d1b5c52db53d8b6dba
3
+ size 15024
checkpoint-72/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29312515ecdeb078acf20cc2c79eee00742f44ea4a3b75ff7112ede39ce6c19d
3
+ size 15024