dwzhu commited on
Commit
a8e8ece
·
1 Parent(s): 8608a99

Upload pose_configuration_llama.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. pose_configuration_llama.py +177 -0
pose_configuration_llama.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Modification Copyright 2023 Dawei Zhu
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """ LLaMA model configuration"""
22
+
23
+ # from ...configuration_utils import PretrainedConfig
24
+ # from ...utils import logging
25
+ from transformers.configuration_utils import PretrainedConfig
26
+ from transformers.utils import logging
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
32
+
33
+
34
+ class LlamaConfig(PretrainedConfig):
35
+ r"""
36
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
37
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
38
+ defaults will yield a similar configuration to that of the LLaMA-7B.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+
44
+ Args:
45
+ vocab_size (`int`, *optional*, defaults to 32000):
46
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
47
+ `inputs_ids` passed when calling [`LlamaModel`]
48
+ hidden_size (`int`, *optional*, defaults to 4096):
49
+ Dimension of the hidden representations.
50
+ intermediate_size (`int`, *optional*, defaults to 11008):
51
+ Dimension of the MLP representations.
52
+ num_hidden_layers (`int`, *optional*, defaults to 32):
53
+ Number of hidden layers in the Transformer encoder.
54
+ num_attention_heads (`int`, *optional*, defaults to 32):
55
+ Number of attention heads for each attention layer in the Transformer encoder.
56
+ num_key_value_heads (`int`, *optional*):
57
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
58
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
59
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
60
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
61
+ by meanpooling all the original heads within that group. For more details checkout [this
62
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
63
+ `num_attention_heads`.
64
+ pretraining_tp (`int`, *optional*, defaults to `1`):
65
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
66
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
67
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
68
+ issue](https://github.com/pytorch/pytorch/issues/76232).
69
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
70
+ The non-linear activation function (function or string) in the decoder.
71
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
72
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
73
+ just in case (e.g., 512 or 1024 or 2048).
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
77
+ The epsilon used by the rms normalization layers.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`.
81
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
85
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
86
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
87
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
88
+ these scaling strategies behave:
89
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
90
+ experimental feature, subject to breaking API changes in future versions.
91
+
92
+ Example:
93
+
94
+ ```python
95
+ >>> from transformers import LlamaModel, LlamaConfig
96
+
97
+ >>> # Initializing a LLaMA llama-7b style configuration
98
+ >>> configuration = LlamaConfig()
99
+
100
+ >>> # Initializing a model from the llama-7b style configuration
101
+ >>> model = LlamaModel(configuration)
102
+
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+ ```"""
106
+ model_type = "llama"
107
+ keys_to_ignore_at_inference = ["past_key_values"]
108
+
109
+ def __init__(
110
+ self,
111
+ vocab_size=32000,
112
+ hidden_size=4096,
113
+ intermediate_size=11008,
114
+ num_hidden_layers=32,
115
+ num_attention_heads=32,
116
+ num_key_value_heads=None,
117
+ hidden_act="silu",
118
+ max_position_embeddings=2048,
119
+ initializer_range=0.02,
120
+ rms_norm_eps=1e-6,
121
+ use_cache=True,
122
+ pad_token_id=0,
123
+ bos_token_id=1,
124
+ eos_token_id=2,
125
+ pretraining_tp=1,
126
+ tie_word_embeddings=False,
127
+ rope_scaling=None,
128
+ **kwargs,
129
+ ):
130
+ self.vocab_size = vocab_size
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.hidden_size = hidden_size
133
+ self.intermediate_size = intermediate_size
134
+ self.num_hidden_layers = num_hidden_layers
135
+ self.num_attention_heads = num_attention_heads
136
+
137
+ # for backward compatibility
138
+ if num_key_value_heads is None:
139
+ num_key_value_heads = num_attention_heads
140
+
141
+ self.num_key_value_heads = num_key_value_heads
142
+ self.hidden_act = hidden_act
143
+ self.initializer_range = initializer_range
144
+ self.rms_norm_eps = rms_norm_eps
145
+ self.pretraining_tp = pretraining_tp
146
+ self.use_cache = use_cache
147
+ self.rope_scaling = rope_scaling
148
+ self._rope_scaling_validation()
149
+
150
+ super().__init__(
151
+ pad_token_id=pad_token_id,
152
+ bos_token_id=bos_token_id,
153
+ eos_token_id=eos_token_id,
154
+ tie_word_embeddings=tie_word_embeddings,
155
+ **kwargs,
156
+ )
157
+
158
+ def _rope_scaling_validation(self):
159
+ """
160
+ Validate the `rope_scaling` configuration.
161
+ """
162
+ if self.rope_scaling is None:
163
+ return
164
+
165
+ if not isinstance(self.rope_scaling, dict):
166
+ raise ValueError(
167
+ "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
168
+ f"got {self.rope_scaling}"
169
+ )
170
+ rope_scaling_type = self.rope_scaling.get("type", None)
171
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
172
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "vanilla_ntk", "yarn"]:
173
+ raise ValueError(
174
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'vanilla_ntk', 'yarn'], got {rope_scaling_type}"
175
+ )
176
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
177
+ raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")