File size: 4,196 Bytes
a4396dc 12ca97b a4396dc 12ca97b a4396dc 12ca97b a4396dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: mixtral-fc-w-resp-new-format-4e-no-negative-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst
datasets:
- path: ./data/with_function_response/function_not_used_training.jsonl
type: sharegpt
conversation: mistral
# - path: ./data/with_function_response/no_function_training.jsonl
# type: sharegpt
# conversation: mistral
- path: ./data/with_function_response/function_used_training.jsonl
type: sharegpt
conversation: mistral
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ../mixtral-fc-w-resp-new-format-4e-no-negative-new
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
wandb_project: function-call
wandb_name: mixtral-fc-w-resp-new-format-4e-no-negative-new
wandb_log_model: end
hub_model_id: dyang415/mixtral-fc-w-resp-new-format-4e-no-negative-new
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 128
eval_steps: 0.2
save_steps: 0.1
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
```
</details><br>
# mixtral-fc-w-resp-new-format-4e-no-negative-new
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1636 | 0.0 | 1 | 2.0806 |
| 0.0914 | 0.8 | 328 | 0.0907 |
| 0.0836 | 1.58 | 656 | 0.0874 |
| 0.073 | 2.36 | 984 | 0.0851 |
| 0.0663 | 3.15 | 1312 | 0.0856 |
| 0.071 | 3.95 | 1640 | 0.0848 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.0 |