File size: 1,928 Bytes
75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 75ddd2e 9a74a60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- nyansapo_ai-asr-leaderboard
- generated_from_trainer
datasets:
- NyansapoAI/azure-dataset
metrics:
- wer
model-index:
- name: whisper-tiny.en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Azure-dataset
type: NyansapoAI/azure-dataset
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 8.886971527178602
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny.en
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Azure-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0691
- Wer: 8.8870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.2834 | 1.38 | 250 | 0.6457 | 19.0682 |
| 0.3634 | 2.76 | 500 | 0.0896 | 7.5065 |
| 0.216 | 4.14 | 750 | 0.0727 | 6.8162 |
| 0.1824 | 5.52 | 1000 | 0.0691 | 8.8870 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|