File size: 1,616 Bytes
699601b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# ebisuke/liz-nojaloli-ja
## License
[MIT License](https://opensource.org/licenses/MIT)
ใใผในใจใใฆ[rinna/japanese-gpt-neox-3.6b](https://huggingface.co/rinna/japanese-gpt-neox-3.6b)ใไฝฟ็จใใฆใใพใใ
## Description
ใฎใใใญใช้ขจๅณใใฃใใใขใใซใงใใ
[rinna/japanese-gpt-neox-3.6b](https://huggingface.co/rinna/japanese-gpt-neox-3.6b)ใใใผในใจใใฆใใกใคใณใใฅใผใณใใฆใใพใใ
## Usage
ใฆใผใถใผใฎๅ
ฅๅใ`็ธๆใฏ่จใใพใใใใ๏ผๅ
ๅฎน๏ผใ\n`ใงๆฌใฃใฆใใ ใใใ
ใขใใซใฏ`็ธๆใฏ่จใใพใใใใ`ไปฅ้ใฎๆ่ใ็ๆใใพใใ
ใใไปฅ้ใ็ถใๅ ดๅใใใใฎใงๅฟ
่ฆใซๅฟใใฆ`ใ`ใฎๆๅญใพใงใงๆใกๅใฃใฆใใ ใใใ
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
tokenizer = AutoTokenizer.from_pretrained("ebisuke/liz-nojaloli-ja", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("ebisuke/liz-nojaloli-ja", load_in_8bit=True, device_map='auto')
text = "็ธๆใฏ่จใใพใใใใ็ ใใซใใปใปใปใ \nใใชใใฏ่จใใพใใใใ"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids=token_ids.to(model.device),
max_new_tokens=1000,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
```
|